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ABSTRACT 

This paper presents results from numerical simulations of footing vibration examining the effect of the 

variation of soil shear stiffness and hysteretic damping ratio with shear strain amplitude on the values 

of the spring and dashpot coefficients of the Lysmer’s analog. Following validation of the numerical 

methodology against existing semi-analytical solutions found in the literature, a series of parametric 

finite element analyses are performed for vertical oscillation, horizontal oscillation and rocking of strip 

footings and vertical oscillation of circular footings, resting on a the free surface of a homogeneous 

half-space. In validation process, the soil is assumed to be a linearly elastic material, while, in the 

subsequent parametric study, the soil is modeled as a non-linear material following a simple 

hyperbolic stress-stain law with hysteresis. The study aims at establishing relationships for the 

determination of the spring stiffness and the dashpot coefficients for footings on fine grained soils as a 

function of the normalized foundation motion amplitude. 

INTRODUCTION 

The role of the foundation soil in seismic response analysis of structures is traditionally represented by 

simple spring and dashpot models. In most cases of soil-structure interaction simulations, the 

foundation soil is assumed to have constant shear stiffness (shear modulus G) and constant hysteretic 

damping ratio h. Numerous research studies have produced  formulas and charts for the determination 

of the spring coefficient K  and dashpot coefficient C for all possible modes of oscillation of shallow 

foundations, as functions of the footing size and geometry, soil elastic parameters, shear wave velocity 

Vs and oscillation angular frequency ω (e.g., Lysmer 1965; Karashudhi et al. 1968; Luco and 

Westmann 1971; Veletsos and Wei 1971;  Veletsos and Verbič 1973; Gazetas and Roesset 1976, 

1979; Gazetas 1983; Dobry and Gazetas 1986). The spring coefficient is usually expressed as the 

product of the static stiffness Kstat and a dynamic stiffness factor k that is a function of ω. The dashpot 

in such models represents mainly the radiation damping (i.e., the energy loss due to the emission of 

mechanical waves to the elastic half-space). The energy consumed at a material point, namely the 

hysteretic damping, is taken into account by applying the principle of correspondence as follows 

(Dobry and Gazetas 1986): 
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It is well known that the actual soil behavior is strongly non-linear, resulting in gradual 

reduction of secant shear modulus and increase of hysteretic damping ratio as the amplitude of shear 

strain   increases (Vucetic and Dobry 1991). Hence, it is expected that K would decrease and C would 

increase with increasing amplitude of foundation displacement (or rotation for the rocking mode). This 

fact is currently neglected in the standard spring-dashpot models that represent the foundation soil in 

soil-structure interaction analyses in engineering practice. Nonetheless, several research efforts have 

focused on introducing soil non-linearity in soil-structure interaction analysis through macro-element 

modeling (e.g., Paolucci 1997; Cremer et al. 2001; Houlsby et al. 2005; Chatzigogos et al. 2009). 

Moreover, significant attention has been drawn recently to the potential benefits to the structural 

seismic response coming from the development of inelastic soil deformation under the foundations 

and from the corresponding energy dissipation (e.g., Mergos and Kawashima 2005; Anastasopoulos et 

al. 2010; Kourkoulis et al. 2012; Zafeirakos and Gerolymos 2013). 

 

 

Table 1. Foundation geometries and vibration modes considered in the finite element analyses. 
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strip footing – vertical 

oscillation (plane strain) 

strip footing – 

horizontal oscillation 

(plane strain) 

strip footing - rocking 

(plane strain) 

circular footing - vertical 

oscillation (axisymmetric) 
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Figure 1. Typical finite element mesh and boundary conditions used in analyses of strip footing excited in 

rocking.  
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This paper investigates the effect of the variation of soil stiffness and hysteretic damping ratio, 

as a function of the motion amplitude, on the values of the spring and dashpot coefficients for shallow 

foundation resting on the free surface of a homogeneous half-space. For this purpose, series of 

parametric analyses were performed using the finite element code PLAXIS 2D (Brinkgreve et al. 

2011) for vertical, horizontal and rocking oscillations of strip footings and vertical oscillation of 

circular footings (Table 1), in which the soil mechanical behavior is represented by a hyperbolic 

stress-strain law that predicts hysteresis. The asymptotic strength of the hyperbolic law is assumed to 

be independent of the mean effective stress. Hence, the analysis results are applicable to fine grained 

soils (e.g., clays, silts) under undrained conditions. In order to ensure that the employed numerical 

methodology is capable of accurately simulating the problem at hand, an initial set of simulations was 

performed considering the ground as a linearly elastic medium with constant hysteretic damping ratio 

and the results were compared with existing semi-analytical solutions (e.g. Dobry and Gazetas 1986).  

VALIDATION OF FINITE ELEMENT APPROACH 

Simulations are first performed assuming that the soil is a linearly elastic medium in order to validate 

the finite element methodology. Finite element results are compared with the predictions of the spring-

dashpot model for which K and C were calculated using the formulas and charts by Gazetas (1983) 

and Dobry & Gazetas (1986), which are based on semi-analytical solutions and, thus, can be 

considered rigorous. A large number of analyses were done for different values of Poisson’s ratio, 

oscillation frequency and hysteretic damping ratio. The hysteretic damping of the soil was introduced 

in the analyses through Rayleigh damping: 

 

RayleighC   M K         (3) 

 

where M and K are the global mass and stiffness matrices of the part of the finite element model 

occupied by the soil (no material damping is assigned to the footing). The parameters  and  are 

usually set to values equal to target and target/, respectively, where target is the desired material 

damping ratio h at the predominant oscillation frequency  of the system. These  and  values 

essentially divide the total contribution to the material damping into two equal parts, one pertaining to 

the mass (mass proportional Rayleigh damping) and the other pertaining to the stiffness (stiffness 

proportional Rayleigh damping). However, this approach is not suitable for problems involving wave 

propagation in a continuum, as it will be shown in the following paragraphs. 

  A typical finite element mesh is shown in Fig. 1, consisting of 15-noded triangular elements. 

Absorbent boundary conditions are assigned to the bottom and lateral boundaries in order to diminish 

reflection of the waves emitted by the foundation and achieve half-space consistent radiation damping 

as much as possible. The footing has a very high Young’s modulus (practically rigid) and is fully 

attached to the ground, i.e. no interface elements are placed between soil and footing. Two sets of 

simulations were performed: a) forced vibration analysis and b) free vibration analysis. In forced 

vibration analysis, the footing is excited by a harmonic (sinusoidal) force time history of constant 

amplitude and frequency. The force is applied at the center of the footing in the case  of vertical or 

horizontal excitation, while a pair of vertical forces of opposite direction are applied at the edges of the 

strip footing in the case of rocking in order to generate moment loading (Fig. 1). In horizontal 

oscillation analyses, the footing is prevented from moving vertically or rotating. Accordingly, in 

rocking analyses, the center of the footing is prevented from moving vertically or horizontally. These 

footing boundary conditions were applied in order to establish pure horizontal motion and pure 

rocking, which would otherwise be impossible due to the well known coupling between these two 

modes of oscillation.  

In free vibration analysis, the footing is first loaded statically, and, subsequently, the loading is 

released (set to zero) instantaneously in order to allow the footing to vibrate freely. The mass of the 

footing was selected such that the resulting motion frequency is in the range of 3Hz to 12Hz. A typical 

response obtained from free vertical vibration analysis of a circular footing on soil with large 

hysteretic damping is shown in Fig. 2. It was observed that the free vibration analyses give a more 
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clear picture than forced vibration analyses with respect to the damping in the soil-foundation system 

and allow direct comparisons with semi-analytical solutions. The static part of these analyses was 

helpful also in making comparisons regarding the static stiffness of the system and in deciding the size 

of the analysis domain. This was particularly important for vertically or horizontally loaded strip 

footings because, in these cases, the footing displacement is sensitive to the distance of the boundaries 

from the footing.  

The finite element results compare well with spring-dashpot analog predictions based on 

Gazetas (1983), Dobry and Gazetas (1986) and the principle of correspondence, with differences in the 

amplitude of forced vibrations not exceeding 5%. The errors are even smaller in analyses with ξh=0%, 

indicating that the finite element modeling in terms of absorbent boundaries and size of analysis 

domain can adequately simulate the correct radiation damping. However, the good agreement between 

the finite element method (FEM) and the spring-dashpot analog based on rigorous semi-analytical 

solutions is achieved on the condition that no mass proportional damping is used and the entire 

material damping comes from the stiffness proportional term by setting  =0 and  =2h/ in Eq. (3). 

In fact, setting the Rayleigh damping to be both mass and stiffness proportional, as usually done in 

structural engineering practice, leads to a severe underestimation of the hysteretic damping of the soil, 

as shown in the example of Fig.2.  

Rayleigh damping has been originally proposed and is suitable for single degree of freedom 

systems. The fact that the use of mass proportional damping in time domain analysis of multi-degree 

of freedom systems is problematic has been highlighted by Hall (2006). Mass proportional damping 

generates viscous forces (which consume energy) that are proportional to the absolute velocity of each 

individual node of the system, as if the material point moves inside a viscous fluid exerting drag 

forces. On the contrary, stiffness proportional damping generates damping forces that are proportional 

to the relative motion (relative velocity) of neighboring nodes and is, thus, related to shear straining. 

Hence, the stiffness proportional Rayleigh damping is closer to the physics of hysteretic damping in 

problems involving wave propagation in a continuum. In such problems, in-phase “single block” 

motion of the entire system is minimal and relative-differential motions dominate, and, as a result, the 

mass proportional component of the Rayleigh damping is undermobilized. As a consequence, if Eq. 

(3) is used with  =h and  =h/, the overall hysteretic damping will be underestimated, as shown 

in Fig. 2.  The excellent agreement between FEM (with purely stiffness proportional Rayleigh 

damping) and the spring-dashpot analog is observed in all examined modes of vibration, 

independently of soil elastic properties, motion frequency and ξh value. So, it can be said that the 

principle of correspondence (Eq. 1 and 2) applies flawlessly to the investigated boundary value 

problems.  
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Figure 2. Comparison of the displacement time history of free vertically oscillating circular footing predicted by 

the spring-dashpot model and finite element analyses with and without mass proportional Rayleigh damping.  
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SOIL NON-LINEAR BEHAVIOR 

The constitutive model used in the non-linear finite element analyses is the model available in 

PLAXIS 2D called Hardening Soil model with small strain stiffness (HSsmall). This model combines 

a shear yield surface (and a hardening cap) with pre-yield non-linear elastic behavior, thus being able 

to take into account the reduction of stiffness with shear strain and also predict hysteretic behavior. 

More specifically, before yielding, the material follows the hyperbolic law presented by Duncan and 

Chang (1970), as modified by dos Santos and Correia (2001). The modified expression of dos Santos 

and Correia (2001) for the secant shear modulus G has the following form: 

 

                                                             

max

0.7

1

1 0.385

G

G 







                                                              (4) 

 

where γ0.7 is the shear strain at which the secant shear modulus G  is reduced to 72.2% of its initial 

(maximum) value Gmax. During unloading and reloading, the pre-yield formulation of HSsmall obeys 

the first and second Masing rules (Kramer 1996). In this study, our intention is to model soil behavior 

using purely the aforementioned hyperbolic law. In order to ensure that the plastic components of the 

constitutive model (yield surfaces, flow rule, e.t.c.) play no role on the material response, the material 

cohesion was set to a value twice the strength asymptote predicted by the hyperbolic law. Moreover, 

the soil friction angle is set equal to zero. As such, the FEM simulation results are meant to be valid 

for saturated fine grained soils (e.g., clays and silts). Fig.3 shows an example of the hysteresis loop 

predicted by the constitutive model in simple shear. 
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Figure 3. Hysteresis loop of soil material under simple shear loading as predicted by HSsmall. 

 

 

The parameter γ0.7 controls the curvature of the shear stress-strain response (backbone curve). 

This allows to fit, to the extent possible, the G/Gmax vs. γ and h vs. γ  curves predicted by the HSmall 

model to the experimental curves of Vucetic and Dobry (1991) for various values of the soil plasticity 

index PI. Three different PI values are considered in this study, PI=5, 20 and 40, with the 

corresponding γ0.7 values that fit the Vucetic and Dobry (1991) curves being 0.00025, 0.0005 and 

0.0008, respectively. The hyperbolic law of Eq. (4) yields zero hysteretic damping for very small shear 

strain amplitudes. On the other hand, experimental studies show that there is a minimum non-zero  



6 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

G
/G

m
a

x

 (%)

Plaxis

Vucetic & Dobry (1991)

PI=5

 0.7=0.00025

(a)

 

0

5

10

15

20

25

30

35

40

45

50

0.001 0.01 0.1 1


h

(%
)

 (%)

Plaxis

Vucetic & Dobry 
(1991)

PI=5

 0.7=0.00025 (b)

  

Figure 4. Comparison of experimental curves and HSsmall model predictions for PI=5. 
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Figure 5. Comparison of experimental curves and HSsmall model predictions for PI=20. 
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Figure 6. Comparison of experimental curves and HSsmall model predictions for PI=40. 
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value for h even at practically zero shear strain. Hence, along with HSsmall, a small amount of 

Rayleigh damping (stiffness proportional) was assigned to the soil in order to achieve a minimum h of 

1%.    

Figs. 4 through 6 compare HSsmall  predictions in simple shear at material point level against 

the experimental observations (Vucetic and Dobry 1991). Effort was made to have the closest possible 

agreement in terms of both G/Gmax vs. γ and h vs. γ  curves.  As a result, the G/Gmax reduction is 

generally under-predicted at the small strain range in order to not excessively over-predict h. Yet, the 

over-prediction of h at γ>0.1% is inevitably large. All non-linear analyses were performed for 

Poisson's ratio v=0.495, assuming that the fine grained soil is fully saturated by capillary suction or by 

being under the water table. 

NON-LINEAR ANALYSIS  

The non-linear finite element analyses focus mainly on the effects of foundation size (half-width B 

ranging from 0.5m to 4m), Gmax (50, 100 and 200MPa) , PI (5, 20 and 40) and oscillation frequency f 

(in the range 3Hz to 12Hz). Given the values assumed for the parameter γ0.7 of the hyperbolic law, the 

(asymptotic) undrained shear strength su of the soil ranges from 32kPa to 416kPa, and the 

corresponding Gmax/su ratio from 480 to 1540. First, static parametric analyses were performed, in 

which the footing was loaded statically in order to obtain the reduction of the equivalent secant spring 

coefficient Kequ and establish curves of Kequ/Kmax as a function of the normalized foundation 

displacement amplitude u/2B (B: footing half-width). Kmax is the spring coefficient corresponding to 

the maximum shear modulus Gmax.  

To determine the equivalent hysteretic damping ratio h,equ of the soil-foundation system, free 

vibration analyses were performed for various levels of initial load amplitude. For each analysis, the 

total damping ratio tot of the system (radiation + hysteretic) was first extracted from the displacement 

time history (Fig. 7) using the well known logarithmic decrement method: 
 

 

 

n n+1

tot,(n)
2 2

n n+1

=
ln /

ln / 4

u u

u u


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                                                    (5) 
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Figure 7. Determination of the damping ratio of a system from free vibration response.  

 

The representative displacement amplitude corresponding to tot,(n) (tot value calculated for the n
th
 

cycle) is assumed to be equal to u(n)=(un+un+1)/2. Given Eq. (1), Eq. (2) and that 

tot h h0.5 ( ) ( )/C K    , the equivalent hysteretic damping ratio of the soil-foundation system can be 

determined from the following equation: 
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equ

h,equ

equ

0.5
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K k C

K k C

 

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
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with C and k obtained from Dobry and Gazetas (1986) and the Kequ value corresponding to u(n). It was 

observed that the h,equ yielded by Eq. (6) was very close to the value obtained if we assume simple 

superposition of radiation and hysteretic damping:  

 

h,equ tot rad tot

equ2

C

K k
   


                                                     (7) 

 

There are several pairs of displacement amplitude in a free vibration decay (such as the one 

shown in Fig. 7) that can be used for the calculation of h,equ. The earlier cycles yield larger damping 

ratios since they correspond to larger displacement amplitudes (and, consequently, larger average 

shear strain in the soil in the vicinity of the footing) than later cycles. By bringing together these 

results from several analyses in a graph, scatter plots are formed, as shown in Fig.8. It is interesting to 

note that the trend lines that fit closely the data points are actually linear functions of the footing 

displacement (or rotation  in this particular case); they appear curved due to the logarithmic scale of 

the horizontal axis. Such trend lines of h,equ vs. u/2B are plotted in Fig. 9 and 10 for all parametric 

analyses performed for vertical oscillation of circular footing and rocking of strip footing, along with 

the respective stiffness reduction curves from static analyses.  

 

0

5

10

15

20

25

0.0001 0.001 0.01 0.1


h

,e
q

u
 
(%

)

u/(2B) = /2 (%)

1kN

10kN

25kN

50kN

100kN

trend line (=120θ+0.92)

lo
ad

 a
m

p
lit

u
d

e
in

it
ia

l

 

0

5

10

15

20

25

0.0001 0.001 0.01 0.1


h

,e
q

u
 
(%

)

u/(2B) = /2 (%)

1kN

10kN

25kN

50kN

100kN

200kN

trend line (=119.5θ+1.13)

lo
ad

 a
m

p
lit

u
d

e
in

it
ia

l

 

Figure 8. Scatter plots of equivalent hysteretic damping ratio h,equ as a function of the normalized footing edge 

displacement amplitude u/2B for strip footing in rocking from analyses with: a) B=0.5m, Gmax=200MPa, PI=20, 

f=12Hz, b) B=1m, Gmax=100MPa, PI=20, f=6Hz) 

 

Due the inherently very large radiation damping exhibited in the case of vertically or 

horizontally oscillating footings, extraction of h,equ from free vibration analyses for these two modes 

was found unreliable. This is because of the very small displacement amplitudes left after the first 

cycle as a result of extreme decay. Moreover, the absorbent boundaries in the vertical or horizontal 

free vibration analyses exhibited significant permanent displacements. For these reasons, the h,equ for 

these two strip footing oscillation modes was extracted from the area of the load-displacement 

hysteresis loop from analyses where the footing was cycled quasi-statically, as shown in Fig. 11. The 

resulting equivalent spring stiffness and hysteretic damping ratio as functions of u/2B are presented in 

Figs. 12 and 13. The constitutive model employed herein predicts zero hysteretic damping at very 

small shear strains and, thus, quasi-static analyses produce zero h,equ for very small footing motion 

amplitudes. Hence, a value of 1% was added to the quasi-static FEM results in order to be able to 

make direct comparisons between Figs. 12 and 13 and Fig. 9 and 10. 
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Figure 9. Equivalent spring stiffness Kequ and hysteretic damping ratio h,equ as functions of the normalized 

footing displacement amplitude u/2B for circular footing in vertical oscillation. 
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Figure 10. Equivalent spring stiffness Kequ and hysteretic damping ratio h,equ as functions of the normalized 

footing edge displacement amplitude u/2B for strip footing in rocking. 
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Figure 11. Typical hysteresis loop from quasi-static analysis of strip footing subjected to vertical cycling. 
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Figure 12. Equivalent spring stiffness Kequ and hysteretic damping ratio h,equ as functions of the normalized 

footing displacement amplitude u/2B for strip footing in vertical oscillation. 
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Figure 13. Equivalent spring stiffness Kequ and hysteretic damping ratio h,equ as functions of the normalized 

footing displacement amplitude u/2B for strip footing in horizontal oscillation. 

 

The curves shown in Figs. 9, 10, 12 and 13 suggest that the equivalent stiffness reduction and 

the equivalent damping ratio depend solely on plasticity index PI. In particular, the reduction of Kequ 

and the increase of h,equ with footing motion amplitude becomes less intense as PI increases, in much 

the same manner G and h at material point level depend on PI. In all examined modes, the curves are 

practically independent of the footing size and Gmax. Moreover, the influence of osicllation frequency 

on h,equ is insignificant.  

For a given level of motion amplitude (say u/2B=0.1%), h,equ is much larger (and Kequ/Kmax is 

much smaller) in the case of rocking than in the cases of vertical and horizontal oscillation. This can 

be attributed to the fact that the strains developing in the soil in the vicinity of the foundation in 

rocking  are  concentrated in a circular arc-shaped region immediately below the footing, where the 

soil is mostly sheared. In contrast, the vertical oscillation creates mainly longitudinal waves below the 

foundation and, to a lesser degree, shear waves that propagate diagonally and laterally, with the 

shearing diffusing gradually with depth. Horizontal oscillation generates mainly shear waves, but 

produces also longitudinal waves that propagate diagonally and laterally. As a consequence, the 

average shear strain in the foundation soil, for a given footing motion amplitude, is clearly larger in 

the case of rocking than in the case of vertical or horizontal oscillation. Thus, the effect of soil non-

linearity (and hysteresis) is more pronounced in rocking than in any other mode. Yet, h,equ is larger (and 

Kequ/Kmax is smaller) in horizontal oscillation than in vertical oscillation. Hence, we can say that the 
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horizontal vibration case lies between rocking and vertical vibration in terms of importance of soil 

non-linearity.   

 

CONCLUSIONS 

A series of parametric analyses were performed using the finite element method (FEM) in order to 

determine  equivalent values for the spring stiffness and hysteretic damping ratio that account for soil 

non-linearity in the standard spring-dashpot model. The finite element methodology was validated by 

first performing analyses in which the soil was linearly elastic with Rayleigh damping. Numerical 

results are in agreement with the predictions of the spring-dashpot model using coefficients based on 

semi-analytical solutions. It was observed that use of both mass and stiffness proportional Rayleigh 

damping leads to severe underestimation of the soil hysteretic damping. Hence, if possible, only 

stiffness proportional damping should be used in analyses involving wave generation and propagation 

in a continuum.  

Finite element analyses performed assuming that the soil follows a hyperbolic stress-strain law 

with hysteresis show that the equivalent spring stiffness reduces and the equivalent (average) 

hysteretic damping ratio of the foundation-soil system increases with increasing motion amplitude, in 

practically the same manner as in the case of a sheared soil element. However, for the same order of 

displacement amplitude, the rocking mode exhibits significantly larger equivalent hysteretic damping 

ratio than the vertical or horizontal oscillation modes. Accordingly, the stiffness reduction is more 

intense in the case of rocking. Regardless of the type of oscillation, the equivalent spring stiffness 

reduction and hysteretic damping curves depend strongly on the plasticity index PI of the soil, but not 

on foundation size, maximum shear modulus or oscillation frequency. 

 Finally, the findings of the present study suggest that the effect of the foundation motion 

amplitude on the spring stiffness and dashpot coefficients is important and may result in a significant 

reduction of the spectral acceleration in soil-structure interaction computations, mostly due to the 

increased hysteretic damping ratio caused by the rocking mode. However, we must stress the fact that 

the constitutive model used herein to simulate non-linear soil behavior over-predicts significantly the 

hysteretic damping ratio at shear strain amplitudes larger than 0.1%, which may be operative in soil-

structure interaction problems involving strong earthquake shaking. Hence, the findings reported in 

this paper need to be verified by analyses using a constitutive model that captures soil hysteresis 

accurately in the entire shear strain range. 
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