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ABSTRACT 

In recent decades interest for utilizing active and semi-active control strategies for seismic protection of 
civil infrastructures have been widely increased. However, the reliability of these systems is still in doubt 
as there is a possibility that the critical components, such as actuators and sensors, malfunction during 
earthquake. 
This paper deals with attenuation of actuator’s fault effects on performance of the control system. In this 
regard, sliding mode concept is used due to its inherent robustness to matched uncertainties. The method 
is applied for designing fault detection observer and fault tolerant controller. The robust observer 
estimates the state of system and reconstructs the actuator fault. The fault tolerant sliding mode controller 
reconfigures itself by the fault distribution matrix and accommodates the fault effect on the system. 
Numerical simulation on a three-story structure demonstrates the effectiveness of the proposed fault 
tolerant system. It was shown that the fault tolerant control system maintains performance of the structure 
at an acceptable level in the post-fault case. 
Keywords: Fault detection, fault tolerant control, sliding-mode control, Actuator Fault, civil 
infrastructures 
 

Introduction: 

In recent decades, the application of active and semi-active structural control strategies for protection of 
civil infrastructures against vibration has gained much attention. Never the less, smart actuators and 
sensors are not eternal in functionality during the control process and each components is vulnerable to 
partial or total malfunctioning (Zhang and Jiang, 2008; Zhang et al, 2011). Consequently, the control 
system should be designed in a way that it can recover itself in partial or total failure of these components. 
These self-recovery methods are known as Fault-Tolerant Control Systems (FTCS). 
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FTCS are classified into passive and active strategy. In passive fault-tolerant control systems (PFTCS), 
controller is designed in a way to be robust respect to presumed faults. Active fault-tolerant control 
systems (AFTCS) can tolerate unpredictable faults through reconfiguring the control action. AFTCS 
comprises two important stages: first Fault Detection and Diagnosis mechanism (FDD) and second 
control reconfiguration, (Mahmoud  et al, 2003; Zhang and Jiang, 2008). On-line FDD provides 
information about the system status and the occurred fault. The FDD unit generates a residual signal to 
detect the faults that occur during the control process. The residue signal is the difference between 
measured parameters of real systems and estimated parameters of healthy model, (Kinnaert, 1999; 
Besançon, 2003; Liberatore et al, 2006).  

In model-based fault detection methods, the observers play an essential role in generating the residual 
signals, (Edwards and Spurgeon, 1998; Edwards et al, 2000). The basic idea behind the use of the 
observers for fault detection is to form residuals from the weighted difference between the actual system 
outputs and the estimated outputs using an observer. Instances of such observers include the unknown 
input observer, the H∞ method, the Kalman filter, the H2/LQG techniques and Sliding Mode observer, 
(Eryurek and Upadhyaya, 1995). Sliding mode observer has a distinct ability in reconstructing 
immeasurable signals (unknown inputs) by appropriate scaling and filtering, which is called ‘equivalent 
output’. Sliding surface behavior in sliding mode observer creates this individual property, (Alwi et al, 
2011). After reconstructing fault signals, the reconfiguration algorithm accommodates the fault effect on 
system.  

As sliding mode controller robust to the matched uncertainty, it can be selected as a reconfigurable 
control, (Shtessel et al. 2002; Hess and Wells, 2003). Sliding mode employs nonlinear control and 
injection signals to force the system trajectories and attain the motion along the sliding surface in a finite 
time, (Utkin, 1992)  

In the present study, an active fault tolerant controller is developed for a system with faulty actuators. The 
sliding mode observer is designed to estimate the state vector of the system and faults of the actuators. 
The variable structure systems along with adaptive sliding mode reconfigure control feedback through the 
matrix distribution for actuator fault. The effectiveness of the proposed method is validated by a 
numerical simulation on a three-story structure.  

Problem Definition and Assumptions: 

A class of uncertain systems is assumed by the following equations: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

x t Ax t BW u t M t
y t Cx t Qu t

  

 


 

(1) 

where ( ) nx t   is the state variable, ( ) mu t  is the control input, and ( ) py t  is the measurement 

output. , , ,n n n m p n n rA B C M          n rM  and p mQ   are real constant matrices. 

 1( ) ,..., mW t diag w w is a diagonal weighting matrix. The scalars 1,..., mw w model the effectiveness level 

of the actuators, for example if 1iw  , the ith actuator is healthy, and if 0iw    the ith actuator has 

failed completely. The signal ( ) : rt    stands for the uncertainty of the system or the external 
disturbance. It is assumed unknown but bounded subject to ( )t  , where   is a known real constant.  
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If unknown function ( ) : qf t     represents the fault (or unknown input) and is defined 
as ( ) ( ( ) ) ( )f t W t I u t   where ( )f t  , and   is a known real constant, then the system Eq. (1) can be 
presented as follows: 
 

( ) ( ) ( ) ( )x t Ax t Bu t B t    (2) 

where  [ ]B B M  and ( ) [ ( ) ( ) ]T T Tt f t t  . 
 Before stating the main results, the following assumptions are made on system (1). 
Assumption 1: Matrix CB  has full column rank, i.e., ( ) ( )rank CB rank B q  . 

Assumption 2: Any invariant zero of triple ( , , )A C B  lies in the left half plane, i.e., for every complex 

 number with non-negative real part, ( )
0

A I B
rank n rank B

C
l

 
 
 
 

. 

 

Sliding Mode Observer for Fault Detection and Diagnose: 

A sliding mode observer is introduced in this part for estimation of actuator fault and states of the systems 
(1). So as to synthesize and analyze the observer, a Lyapunov second method is employed, (Hui and Zak, 
2005; Kalsi et al, 2011).The estimated parameter of this observer is denoted as x̂  and its difference with 
real parameter x  is estimation error ( e ) which is defined as;  
 

ˆ( ) ( ) ( )e t x t x t   (3) 

The observability of ( , )A C implies the existence of a matrix n pL  such that the matrix ( )A LC  has 
prescribed (symmetric with respect to the real axis), eigenvalues in the open left-half plane. Because 
( )A LC  is asymptotically stable, there is a unique 0TP P   such that 
 

( ) ( ) 0TA LC P P A LC     (4) 

Therefore, by having P and L , the observer can be formed as below: 

ˆ ˆ( ) ( , )x A LC x Bu Ly LQu Bv e k       (5) 

The discontinuous output error injection input ( , )v e t is defined as 

2

if 0
( , )

0 otherwise

FCe
k e

FCev e k








 

(6) 

 

where k is a design parameter and k �M  where �M is a known real constant and ( )t�M �K . Using the 
arguments by Walcott  et al (1987), it can be shown that the state x̂  of the dynamic system (5) estimates 
asymptotically the state x of system (2): 

ˆlim ( ) lim( ( ) ( )) 0
t t

e t x t x t
 

    (7) 
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The differential equation describing the estimation error is 
ˆ ( ) ( , )e x x A LC e Bv e k B�K        (8) 

 
Since B is of a full rank, the following approximation is achieved: 
 

( , )v e k�K  (9) 
 

Sliding Mode Fault Tolerant Controller 
 
Considering system (1), the information about the actuator effectiveness level (i.e. the matrix W ) is 
assumed to be available through the previous section. The system states can always be reordered, and the 
matrix B  from (1) can be partitioned as: 
 

1

2

B
B

B

 
 
 

 
(10) 

 

 
where ( )

1
n l mB    and 2

l mB  are of rank l m .  It is assumed as in Alwi and Edwards (2010) that 

2B is greater in norms in comparison with 1B , i.e. 12B B , therefore, 2B dominantly delivers the 
effect of the control action to the system dynamics. In the design, it is also assumed that the states are 
scaled to ensure that 2 2 .TB B I  
The block diagram of the ISM FTC scheme with online CA is shown in Figure 1. In Online CA, it is 
assumed that there is an actuator effectiveness estimator, ( )W t , available from the sliding mode fault 
observer. The control law ( )u t considered in this section has information about the actuator effectiveness 
level (matrix W ) to distribute the control signals, (Hamayun et al, 2013; Hamayun et al, 2012) 
 

 

Figure 1. Block diagram of the ISM FTC scheme with online control allocation 

For online CA, an expression for the physical control law ( )u t is defined as 
 

2 1
2 2 2 ) ( )) (( T TB Wu t W B v tB   (11) 

where ( ) lv t   is the virtual control input and providing that 2
2 2det( ) 0TB W B  .  

 
This way, the sliding mode control law maintains sliding during faults or failures and is responsible to 
keep the performance of system as close as possible to the nominal system, which is defined as 
 

( ) ( ) ( )l nv t v t v t   (12) 
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2 1
2 2( )Tv B W B v  (13) 

where 
 

  1( )l wv t GB Fx   (14) 

 

  1 )( , ( ,
( ,

( ) ) 0
)wn

tv t GB for t
t

x x
x

�V
�U �V

�V
    

(15) 

where  
2

1 2
2

2 2

T

w T

BW B
B

B W B
 

  
 

 and with the current sliding surface and to simplify the following calculation, 

G is assumed as; 
1

2: ( )T TG B B B B  (16) 

 
and �U is a gain to enforce the sliding. The design of the state feedback gain F in (14) is based on the 
augmented system ( , )vA B , which is assumed controllable. The gain F is derived through Linear Matrix 
Inequality (LMI) optimization in H structure and plays an important role in guaranteeing the closed-loop 
stability of the integral sliding motion (ISM). 
The regulated output of controlled system (1) is described as bellow: 

( ) ( ) ( ) ( )z z zZ t C x t D u t M t�[    (17) 

To design feedback gain in H structure with the 2L gain matrix from u  to y  should be extended into the 

2L gain from [ ]u �]  to [ ]T T Ty Z which equals Hnorm of the new transfer function ( )G s : 

( )
T

T

Ty u
G s

Z �[


  
     

 
 

(18) 

 

and it satisfies ( )G s �J

 if and only if 0TX X  and 0�J  such that minimization of �Jis subject to: 

2

2

0 0 0
00 0

0 0 0
0 0

T T T T T T
v v

T

T T
z

z

z z

z z

AX XA B Y Y B B M Y XC Y D
B I
M I M
Y I
C X D Y M I

�J

�J

    
  
  
 

 
   




 

(19) 

 

The feedback gain F can be recovered as 1F YX   

 
Numerical simulation of a three-story structure 
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A three-story shear–frame structure was simulated to demonstrate the effectiveness and feasibility of the 
proposed scheme. This model which has been previously presented by  Wang et al (2009) and Larbah and 
Patton (2010) is an in-plane lumped-mass shear structure. Its control devices were allocated between 
every two neighboring floors, as shown in Figure 2. The mass, stiffness, and damping matrices are given 
as:  
 

 
Figure 2. A three-story controlled structure excited by unidirectional ground motions 

 

 3 36

6 0 0 3.4 1.8 0 12.4 5.16 0
0 6 0 10 , 1.8 3.4 1.6 10 , 5.16 12.4 4.59 10
0 0 6 0 1.6 1.6 0 4.59 7.20

M kg K N m C N m s
      

                   
           

 
(20) 

 

It is assumed that inter-story velocities and floor accelerations are measurable. For the purpose of 
simulation, the 1940 El Centro NS (Imperial Valley Irrigation District Station) ground motion record was 

considered as an input excitation with peak acceleration scaled to 21 /m s . The actuators generated the 
desired control force at each floor without any problems. 

Actuator Fault Definition  
 
Different faulty cases may happen for each actuator, which may be caused by mechanical imperfections 
or driver laws of actuator (Cai et al, 2013). Herein, dead zone fault considered as occurring mechanical 
imperfections. This fault generates zero output within a specified region which is called as dead zone. It 
has specify lower limit (LL) and upper limit (UL) as the start of dead zone and end of dead zone 
parameters, and the output of dead zone is defined as: 
 

0dead zone

u UL u UL
u LL u UL

u LL u LL

 
  
  

 

(21) 

 

 
It is assumed that the dead zone fault of the third floor actuator force is of a lower and upper limit of 

5000LL N   and 4500UL N . Figure 3 compares the generated force by the healthy actuator with 
that of the faulty one in third floor. Figure 4 shows the estimated and the actual fault that confirms the 
accuracy of the observer. 
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Figure 3. Actuator force in third floor for healthy and dead zone fault case  

 

0 2 4 6 8 10 12 14 16
-6000

-4000

-2000

0

2000

4000

6000

Time (sec)

Fo
rc

e 
(N

)

 

 

Actuator Fault
Estimated Fault

 

Figure 4. Actual and estimated dead zone fault occurred in actuator of the third floor  

 

Online Control Allocation: 
 
Online control allocation is the proccess of on-line redistribuation of control signal, in case of an actuator 
fault, in which other actuators are used to compensate lack of the faulty actuator and maintain the 
perfomance of system. The level of contribution of each actuator in the new control system is determined 
by an online control allocation, which is function of the actuators effectiveness level matrix. The actuators 
effectiveness level matrix is a diagonal matrix function of actuators faults in each step of time, and it is 
defined as the ratio of the estimated force to the desired force in each step of time. For each of its diagonal 
arrays,  1( ) ,..., mW t diag w w , a lower boundary and an upper boundaries is considered, 0 1iw  . 
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Since even a faulty actuator may work at 1% of its capacity, considering iw as 0 may cause an error in 
numerical simulations. Accordingly, the lower boundary of actuator effectiveness should be limited to 
0.01.  
As shown in Figure 5, upon occurrence of fault in actuator on third floor,  the first and second diagonal 
arrays of the ( )W t  equal 1 and the third diagonal array varies by time as shown in Figure 5 
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Figure 5. Diagonal arrays of the actuators effectiveness level matrix 

Here, the simulation is carried out for the healthy and faulty actuators with and without considering online 
control allocations and then, the effectiveness of the assumed controller is evaluated by fault free 
simulation. Figure 6 depicts inter-story drift of the first floor by using three different control systems: 
with a healthy actuator, a faulty actuator with online control allocation and a faulty actuator without 
control allocation. As shown, the maximum drift of the first floor using online control allocation is 
effectively lower than that in the system without control allocation and in some peaks, their difference is 
smaller than 42%. Surprisingly, the maximum drift of system with online control allocation is also lower 
than control system with a healthy actuator. This deviation refers to redistribution of control actions in 
online control allocation. 
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Figure 6. Drift response of the first floor for the healthy system and the dead zone fault case 

 



A.Yeganeh Fallah and  T.Taghikhany 
 

9 
 

0 2 4 6 8 10 12 14 16
-1

-0.5

0

0.5

1 x 10
4

Time (sec)

Fo
rc

e 
(N

)

 

 

Healthy
Online Control Allocation
Without Control Allocation

 
Figure 7Figure 7 to Figure 9 depict applied forces of actuators in first, second and third floor of the 
structure. As illustrated in these figures for faulty case, the online control allocation tries to compensate 
for the imperfections of the third floor actuator by increasing the generated force in first and second 
floors. In some cases, the applied forces in reconfigured control system by actuators are three times of the 
generated force of actuators in a healthy case.   
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Figure 7. Applied force by the actuator of the first floor in the healthy system and for the dead zone fault case 
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Figure 8. Applied force by the actuator of second floor in the healthy system and for the dead zone fault case 
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Figure 9. Applied force by the actuator of third floor in the healthy system and for the dead zone fault case 

 

Conclusion:  
 
As imperfection and fault of actuators in active and semi-active structural control system are 
inevitable, and actuators and sensors are vulnerable to faults, the fault tolerant control is vital for having 
a reliable and robust performance of structural control systems. In this paper, the Sliding modes were 
used to detect and diagnose faulty actuators. In this regard, a robust sliding mode observer was 
introduced to estimate the unknown input and detect faults in the control system.  
After fault detection, the effectiveness matrix of the actuators was built up for the fault tolerant 
control. Effectiveness matrix is introduced to correct the sliding mode with redistribution of 
control signals to the healthy actuators. Next, the desire gain of the controller was designed in 
H framework to regulate robust outputs of the faulty actuators. 
A three-story shear–frame structure was used to demonstrate the effectiveness and feasibility of the 
proposed active fault-tolerant control system (AFTCS). The obtained results show that if mechanical 
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imperfection of the actuator is assumed as dead zone fault type, the sliding mode with online control 
allocation perfectly reconfigures its control signals and maintains the system performance at the most 
available appropriate level.  
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