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ABSTRACT 
 
Current (code-based) seismic bridge design focuses on accommodating structural deformation, and 
eventually damage, during an earthquake excitation. On the contrary, a rocking bridge pier/bent is de-
signed to uplift and pivot, in order to limit structural deformation and damage. A rocking bridge utiliz-
es primarily its rotational inertia to counter the seismic demand. This paper investigates, analytically 
and numerically, the seismic response of a symmetric rocking bridge bent/frame. In particular, it ex-
amines both free-standing and hybrid (i.e. enhanced with supplemental damping and re-centering ca-
pacity) symmetric rocking bridge bents. The paper neglects the structural deformation of the frame-
members and establishes the equations of motion following the principles of analytical dynamics. The 
analysis considers both pulse-type and non-pulse-type ground motions. It illustrates the sensitivity of 
the response to the fracture elongation of the supplemental re-centering and damping devices. The re-
sults confirm the high-performance seismic behavior of the (hybrid) rocking frame. 

 
Keywords: rocking bridges, structural dynamics, seismic resistant structures, analytical dynamics, pre-
fabricated bridges 

 
INTRODUCTION 
 
Rocking isolation hinges on allowing the bridge piers to uplift and pivot during an earthquake excita-
tion. Thus, this alternative seismic design focuses on diminishing structural deformation and damage, 
and is currently proliferating. Of particular interest in this context, is the structural configuration of the 
‘rocking frame’ (Fig. 1). 

The ‘rocking frame’ combines the merits of the precast construction method (see Pang et al. 
(2008), Wacker et al. (2005) and references therein), with the benefits of rocking isolation. Mander 
and Cheng (1997) proposed the rocking bridge bent (rocking frame) as a ‘damage avoidance design’ 
for bridges. Makris and Vassiliou (2012) revisited the seismic response of the ‘rocking frame’. They 
showed that the more ‘top-heavy’ the rocking frame is the more stable it becomes. DeJong and 
Dimitrakopoulos (2014) established a methodology to define, an exact or approximate, equivalence 
between more complicated rocking structures (e.g. the rocking wall, the asymmetric rocking frame and 
the rocking arch) and the archetypal rocking block. Recently, Dimitrakopoulos and Giouvanidis (2014) 
investigated the seismic stability of the asymmetric rocking frame and showed its high-performance 
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seismic behavior. 
Currently, ‘rocking’ bridges exist in New Zealand, e.g. the Rangitikei Railway Bridge and the 

Deadman’s Point Bridge at Cromwell (Priestley et al. 1996, Skinner et al. 1980) and date back to the 
80’s. During the last ten years though, many experiments have verified the beneficial isolation effect 
of the rocking behavior (Solberg et al. 2009, Cheng 2008, Chen et al. 2006). Sakai and Mahin (2004) 
showed that rocking combined with additional re-centering capacity, can reduce significantly the 
(seismic) residual displacements/deformations of a bridge pier, without altering substantially its peak 
response. Further, the addition of supplemental energy dissipation confines the amplitude of rocking 
and has been proposed, or considered for rocking bridges among others by Antonellis and Panagiotou 
(2013), Marriott et al. (2009), Palermo et al. (2007), Palermo et al. (2005). Dimitrakopoulos and 
DeJong (2012a) performed a thorough study on the effect of viscous damping on rocking response. 
The combined use of supplemental damping and additional re-centering devices leads to hybrid rock-
ing bridges that attracted the attention of researchers (Kam et al. (2010), Marriott et al. (2009), 
Palermo et al. (2007), Palermo et al. (2005) among others) as ‘high-performance systems’ that could 
survive major earthquakes without significant damage. In this context, there is an increasing need to 
examine the rocking response and assess the seismic stability of rocking bridge bents. 

The present study, focuses on the symmetric rocking frame and builds on previous work (Makris 
and Vassiliou 2012, DeJong and Dimitrakopoulos 2014, Dimitrakopoulos et al. 2013) by assessing the 
seismic stability and performance of the rocking frame, free-standing or hybrid. The study also evalu-
ates the effect of basic design parameters from the standpoint of potential future bridge applications. 
Specifically, it examines the effect of different levels of supplemental viscous damping and elastic 
stiffness, as well as the assumed fracture elongation (of the supplemental re-centering and damping 
devices) on the seismic response of the rocking bent. 

 
ANALYTICAL MODELLING OF THE HYBRID ROCKING FRAME 
 
Consider a rocking frame free-standing, or (hybrid) strengthened with central unbonded tendons and 
external viscous dampers  at the bottom of the piers (Fig. 1). Assume that sliding at the contact surfac-
es is restricted and ignore the deformation of the (three) members. During a strong ground motion, this 
rocking frame develops a three-block rocking mechanism as in Fig. 1. 
 

 
 

Fig. 1 The examined rocking bridge bent 
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Kinematics 
Fig. 1 shows the assumed three-block mechanism for both clockwise and counter-clockwise rotations 
and the pertinent pivot points  A, B, C, D  and  A', B', C', D'  accordingly. The two columns exhibit the 
same rocking rotation and the connecting cap-beam sustains only rigid body translation. 

The kinematics of the three block mechanism of Fig. 1 can be captured with a single generalized 
coordinate, the angle  φ  (Fig. 1) with respect to the x-axis. The pertinent rocking amplitude is the rota-
tion     with respect to the initial (rest) position: 0      (Fig. 1). 

 
Equation of motion during rocking 
The equation of motion for the rocking mechanism of Fig. 1 is derived using Lagrange’s equation: 

d T T V
Q

dt   
   

      
 (1) 

Where  T  is the kinetic energy, V  is the potential energy, Q  is the generalized force and  φ  is 
the generalized coordinate which describes the rocking motion. 

The potential energy of the three-block mechanism can be expressed as: 

fr tendV V V   (2) 

Where  Vfr  is the potential energy of the free-standing frame (due to the gravitational forces) and  
Vtend  is the additional potential energy due to the elongation of the tendons. It holds: 

  02 sin sinfr AB BC BC BC BCV m m R m r g       (3) 

And: 

 2
4tendV k l  (4) 

Where  mAB, mBC  and  mCD  are the masses of the members  AB, BC  and  CD, respectively and  
l   the elongation of the tendon. Therefore: 

 28 1 sintendV kb        (5) 

Ignoring the mass of the tendons and the dampers, the kinetic energy of the system is: 

 2 2
02AB BCT I m R     (6) 

Where  IAB  is the mass moment of inertia of  AB  with respect to the pivot point  A (or  A') and  
R0  is the half length of the diagonal of the AB column of the frame (Fig. 1). 

The calculation of the virtual work of the non-conservative forces yields the generalized forces: 

ncW Q   (7) 

Or: 

 G D G DW W Q Q      (8) 

Where the generalized inertia force  GQ   is: 

  02 sinG AB BC gQ m m R u     (9) 

And the generalized damping force  DQ   is: 

 24 1 sinDQ Cb          (10) 

C  is the damping constant of the linear external viscous dampers. After substituting into La-
grange’s equation (Eq. (1)), the equation of motion can be written as (Makris and Vassiliou 2012, 
DeJong and Dimitrakopoulos 2014, Dimitrakopoulos et al. 2013): 

         nl nl nl nl nl gI G g K D B u              (11) 

Where Inl, Gnl, Bnl, Knl  and  Dnl  are nonlinear functions of the generalized coordinate and equal 
with: 
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For the symmetric rocking frame the minimum dimensionless ground acceleration capable of in-
itiating rocking is  

,min / tangu g   . The study assumes that the behavior of the supplemental 

tendons and dampers is elastic until fracture, which occurs simultaneously for all tendons and damp-
ers. Hence, if the tendons and the dampers reach their fracture elongation  εf, say at time instant  tf , the 
equation of motion switches irreversibly to the equation of the free-standing frame (Eq. (14), (15)) 
(terms Knl  and  Dnl  in Eq. (11) disappear). 

Further, following Makris and Zhang (2001) work, we define: 
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(13) 

Where  q  is the influence factor, σ  is the strength parameter in which  Fu  is the strength of the 
tendon and  γ  is a dimensionless group (Dimitrakopoulos and DeJong 2012a) relating the damping 
constant  C  with the masses  mAB, mBC  and with the frequency parameter  

03 / 4p g R   of the 

symmetric rocking frame. 
Substituting Eq. (12) into Eq. (11) and with the aid of the abbreviations of Eq. (13) we finally 

derive the equations which describe the motion of the symmetric rocking frame with respect to the 
generalized coordinate     before and after brittle fracture occurs (Eq. (14)). 
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(14) 

The equations of motion written also in terms of the rocking amplitude     are: 
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Eq. (15) gives the equations of motion with respect to the rocking rotation   , before and after 
brittle fracture occurs. Note the equivalence between the equations describing the motion of the sym-
metric rocking frame (Eq.(15)) with the pertinent equations of the rocking block (Dimitrakopoulos and 
DeJong 2012a). 

To determine the post-impact state, we need first to solve the rocking-impact problem and de-
termine the angular velocity after the impact. An in-depth analysis for different geometries of the rock-
ing frame can be found in the work of Dimitrakopoulos and Giouvanidis (2014). Herein, the effect of 
impact is captured simply with the ratio of the angular velocities after and before the impact, defined 
as the coefficient of restitution        : 

23
1 sin 3 cos 2

2
1 3

  
 





 
 





 (16) 

Where  
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b

R
  , verifying the result derived recently by 

Makris and Vassiliou (2012). 

 
ASSESSMENT OF THE SEISMIC STABILITY OF THE SYMMETRIC ROCKING 
FRAME 
 
This section investigates the seismic response of a symmetric (free-standing and hybrid) rocking 
frame. Consider a typical span of a multiple-span highway bridge, with a cross section as in Fig. 1, and 
assume a deck  13 m  wide and a deck-cap-beam with height  2h = 2 m. The bent consists of two col-
umns with 2b = 1.0 m  base each, and height  2H = 7.0 m, while the distance between them is  L = 8 m. 
The deck/piers mass ratio is 10, corresponding roughly to a span of  40 m  length (Mander and Cheng 
1997). The polar radius of gyration of the deck cross-section is assumed to be 3.58 m and the distance 
from the center of mass of the deck-cap-beam to the pivot points is  BCr  = 4.64 m  (Fig. 1). Finally, the 

beam-column and the column-foundation connections prevent relative sliding, but allow uplifting and 
consequently act as simple/free supports. 
 
Mathematical (pulse-type) ground motions 
Large rocking structures (e.g. a rocking bridge bent) are more vulnerable to low-frequency coherent 
ground motions (e.g. Acikgoz and DeJong (2013) and references therein). Hence, to assess the seismic 
stability of the rocking bridge bent we examine first pulse-type excitations. Various mathematical 
pulses have been proposed in the literature that can capture both qualitatively and quantitatively the 
long distinct pulses of near-fault ground motions (Acikgoz and DeJong 2013, Kafle et al. 2011, 
Voyagaki et al. 2013). In this study, we consider the Ricker pulse (Ricker 1944, 1943) which can be 
defined with two parameters: either the acceleration ( ga ) or the velocity ( gv ) amplitude, and the peri-

od  Tg. Eq. (17) describes the symmetric Ricker pulse: 

 
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Similarly, Eq. (18) gives the antisymmetric Ricker pulse: 
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In both cases (Eq. (17) and (18)) 2 /g gT     is the period that maximizes the Fourier spec-

trum of the corresponding Ricker wavelet. In Eq. (18),   = 1.38  enforces the function to have a max-

imum equal to the acceleration amplitude  ga .  

The consideration of pulse-type excitations facilitates also the use of dimensionless variables 
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(e.g. DeJong and Dimitrakopoulos (2014), Dimitrakopoulos and DeJong (2012b)). Herein, the follow-
ing results are presented in dimensionless terms scaled with respect to the rocking properties (frequen-
cy parameter  p  and slenderness  α) of a column of the frame. 
 

 
 

Fig. 2 Overturning plots of the symmetric free-standing (γ = 0) and of the damped rocking frame with additional 
damping  γ  equal to  0.1, 0.4 

 
To limit the amplitude of rocking rotations and enhance the seismic stability of the rocking 

bridge bent, we investigate the use of unbonded (slack) central tendons and external viscous dampers 
(Fig. 1); thus, converting the free-standing into a hybrid rocking frame. As a first approach, we inves-
tigate separately the effect of each one (i.e. parameters  σ  and  γ) on the seismic stability of the sym-
metric rocking bridge bent. Further, to highlight the high-seismic-performance of the hybrid frame, we 
examine the combined effect of the parameters  σ  and  γ,  which control the stiffness and damping 
constants respectively (Eq. ((13)), on the response. 

The overturning plot (e.g. of Fig. 2) separates the control plane (ag/(g tanα) - ωg/p) into two are-
as: a shaded (grey) area where the structure overturns (after impact or without any preceding impact) 
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and a non-shaded (white) area, where the structure is safe (no overturning occurs). Recall that rocking 
structures display various overturning modes with respect to the number of the preceding impacts 
(Dimitrakopoulos and DeJong 2012b). Fig. 2 shows that the structure is most vulnerable to low-
frequency acceleration pulses, while it survives even high amplitude higher-frequency pulses. In other 
words, the seismic response of the rocking frame exhibits typical, and in that sense, predictable rock-
ing behavior under pulse-type excitations (Dimitrakopoulos and DeJong 2012b). 

Fig. 2 compares the seismic stability of the free-standing (σ=0  and  γ=0) rocking frame and the 
rocking frame which is retrofitted with external viscous dampers, both subjected to the same Ricker 
pulses. It examines a range of dimensionless damping values (γ=0.1, γ=0.4), which correspond to 
damping constants equal to  12.6 MNs/m  and  50.6 MNs/m  respectively. 

 

 
 

Fig. 3 Overturning plots of the symmetric free-standing (σ = 0) rocking frame and of the frame retrofitted with a 
central tendon assuming no fracture with strength parameter  σ  equal to  0.001, 0.005 

 
Further, Fig. 3 displays the seismic response of the rocking frame enhanced solely with central 

tendons, which are assumed linear-elastic. The dimensionless strength parameters considered are  
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σ=0.001  and  σ=0.005, which correspond to stiffness constants equal with  7.24 MN/m  and  36.2 
MN/m  respectively. Both figures (Fig. 2 and Fig. 3) demonstrate the enhanced seismic performance of 
the hybrid frame, supplemented with either damping or re-centering capacity. 
 

 
 

Fig. 4 Overturning plots of the symmetric free-standing (σ = 0) rocking frame and of the frame retrofitted with a 
central tendon considering fracture elongation  εf = 1% with strength parameter  σ  equal to  0.001, 0.005 

 
As a second step, we assume that the tendons remain linear-elastic until their brittle fracture at 

elongation  εf. The critical rocking rotation, beyond which the structure becomes unstable, and poten-
tially overturns, is  cr  . Consequently, rotations of the hybrid frame near overturning correspond, 

roughly, to elongations of the tendon in the order of  1.0% (assuming a tendon with length equal to  
8.5 m  as in Mander and Cheng (1997)). 

Fig. 4 presents the seismic stability of the free-standing rocking frame and the frame enhanced 
with central tendons considering  εf =1%  fracture elongation. In particular, in Fig. 3  εf  is high enough 
to ensure the system of tendons stays within the linear-elastic range until overturning, whereas in Fig. 
4 the fracture elongation is taken as  εf = 1.0%  the length of the tendon. When the elongation of the 
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tendon exceeds the fracture limit we assume that, from that point on, the frame behaves as free-
standing. 
 

 
 

Fig. 5 Overturning plots of the symmetric free-standing (σ = 0, γ = 0) and hybrid rocking frame assuming no 
fracture with stiffness and damping parameters  σ  and  γ  equal to  0.005, 0.1 respectively 

 

 
 

Fig. 6 Overturning plots of the symmetric free-standing (σ=0, γ=0) and hybrid rocking frame considering frac-
ture elongation εf = 1%  with stiffness and damping parameters  σ  and  γ  equal to 0.005, 0.1 respectively 

 
Finally, we study the rocking bridge bent enhanced with central tendons and external viscous 

dampers combined. Fig. 5 and Fig. 6 show the seismic behavior of both free-standing and hybrid rock-
ing frames under pulse-type excitations. Fig. 5 corresponds to the case the system of tendons and 
dampers remain linear-elastic without fracture, whereas in Fig. 6 after a certain elongation both the 
tendons and the dampers fail simultaneously. The comparison of Fig. 5 and Fig. 6 unveils the sensitivi-
ty of the seismic performance/stability to the assumed fracture elongation. In general, the higher the 
fracture elongation the more drastic the enhancement of the stability (Fig. 5, Fig. 6) is. Interestingly 
though, the seismic stability of the hybrid is not always better compared with the free-standing rocking 
frame. Similar to the anchored rocking block (Dimitrakopoulos and DeJong 2012a) and to the asym-
metric rocking frame (Dimitrakopoulos and Giouvanidis 2014), counter results also appear where the 
response of the hybrid frame is worse than that of the corresponding free-standing frame. Fig. 2 to Fig. 
6 illustrate such cases, wherein the hybrid frame overturns while the free-standing frame survives the 
excitation; for instance when  ag/(g tanα) ≈ 1 ÷ 3,  ωg/p  ≈ 1 ÷ 2  and the excitation is an antisymmetric 
Ricker pulse (Fig. 6). These peculiar response characteristics stem from the frail (highly nonlinear) 
nature of rocking dynamics and in that sense are anticipated. 
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Historic Excitations 
To extend the seismic stability analysis of the rocking frame, we examine historic excitations regard-
less of whether they contain distinguishable pulses or not. In particular, we consider a well-known set 
of historic ground motions scaled to yield a probability of exceedance of  2%  in  50 years (SAC 
1997). 
 

Table 1 Earthquake records (probability of exceedance of  2%  in  50  years) (SAC 1997) 
 

Number Record Magni-
tude 

Scale 
Factor 

DT 
(s) 

Duration 
(s) 

PGA 
(cm/sec2) 

SE21 1992 Mendocino 7.1 0.98 0.02 59.98 741.13 
SE22 1992 Mendocino 7.1 0.98 0.02 59.98 476.22 
SE23 1992 Erzincan 6.7 1.27 0.005 20.775 593.60 
SE24 1992 Erzincan 6.7 1.27 0.005 20.775 529.06 
SE25 1949 Olympia 6.5 4.35 0.02 79.98 878.23 
SE26 1949 Olympia 6.5 4.35 0.02 79.98 805.68 
SE27 1965 Seattle 7.1 10.04 0.02 81.82 1722.40 
SE28 1965 Seattle 7.1 10.04 0.02 81.82 1364.70 
SE29 1985 Valpariso 8.0 2.9 0.025 99.975 1605.50 
SE30 1985 Valpariso 8.0 2.9 0.025 99.975 1543.50 
SE31 1985 Valpariso 8.0 3.96 0.025 99.975 1246.20 
SE32 1985 Valpariso 8.0 3.96 0.025 99.975 884.43 
SE35 1978 Miyagi-oki 7.4 1.78 0.02 79.98 595.07 
SE36 1978 Miyagi-oki 7.4 1.78 0.02 79.98 768.62 

 

 
 

Fig. 7 Seismic response of the symmetric (free-standing and hybrid) rocking frame for different earthquake rec-
ords (bottom). Top: dimensionless rocking rotation and middle: dimensionless angular velocity 

 
Fig. 7 and Fig. 8 compare the seismic response of the free-standing and hybrid rocking frames, 

in terms of time-history and peak response respectively. For the hybrid frame a fracture elongation of  
εf = 1.0%  is assumed. Fig. 8 shows that among the examined historic records the most destructive are 
the SE23, SE24 from the 1992 Erzican, Turkey earthquake, the SE21 from the 1992 Mendocino, Cali-
fornia earthquake and the SE27 from the 1965 Seattle, Washington earthquake. Even though the exam-
ined ground motions are scaled to the maximum credible earthquake level, the free-standing bridge 
bent survives most of them, while the pertinent hybrid bent not only survives all ground motions of 
Table 1, but also, it does not reach the critical (fracture) rotation. Recall that, according to the assump-
tions of the present analysis, when the structure survives the motion (i.e. it does not overturn), it even-
tually re-centers to the original configuration without any permanent rotation and/or damage. Finally, 
note that rocking response becomes less orderly for non-coherent seismic excitations (Acikgoz and 
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DeJong 2013). Hence, it is precarious to derive general conclusions, for other excitations, based on the 
present results. 
 

 
 

Fig. 8 Maximum rotations (in dimensionless terms) for all the earthquake records of Table 1 
 
 
CONCLUSIONS  
 
This paper examines the seismic response of a symmetric (planar) rocking frame within the context of 
an alternative seismic design paradigm for bridge bents. In particular, the paper compares the seismic 
stability of both the free-standing and the hybrid (supplemented with additional restoring and/or damp-
ing capacity) rocking bridge bent. 

The results confirm the ample seismic stability of the hybrid rocking bridge bent, and verify its 
promising high-performance seismic behavior. The hybrid rocking frame survives all historic records 
examined, even though they are scaled to the ‘maximum credible earthquake’ level. Further, the study 
demonstrates the effect of different levels of supplemental viscous damping and elastic stiffness, and 
unveils the dominant role of the fracture elongation (of the supplemental tendons and dampers) on the 
seismic response of the hybrid rocking frame. 

 
ACKNOWLEDGEMENTS 
 
Financial support was provided by the Research Grants Council of Hong Kong, under grant reference 
number ECS 639613. 

 
REFERENCES 
 
Acikgoz S. & DeJong M. J. (2013). "The rocking response of large flexible structures to earthquakes". Bulletin 

of Earthquake Engineering, 1-34. 
Antonellis G. & Panagiotou M. (2013). "Seismic Response of Bridges with Rocking Foundations Compared to 

Fixed-Base Bridges at a Near-Fault Site". Journal of Bridge Engineering. 
Chen Y. H., Liao W. H., Lee C. L. & Wang Y. P. (2006). "Seismic isolation of viaduct piers by means of a 

rocking mechanism". Earthquake engineering & structural dynamics, 35(6), 713-736. 
Cheng C.-T. (2008). "Shaking table tests of a self-centering designed bridge substructure". Engineering 

Structures, 30(12), 3426-3433. 
DeJong M. J. & Dimitrakopoulos E. G. (2014). "Dynamically equivalent rocking structures". Earthquake 

engineering & structural dynamics, (in press). 

0

0.3

0.6

0.9

1.2

1.5

free-standing
hybrid

overturning 
m

ax
/




fracture (εf=1.0%) 



 

12 

Dimitrakopoulos E. G. & DeJong M. J. (2012a). "Overturning of retrofitted rocking structures under pulse-type 
excitations". Journal of Engineering Mechanics, 138(8), 963-972. 

Dimitrakopoulos E. G. & DeJong M. J. (2012b). "Revisiting the rocking block: closed-form solutions and 
similarity laws". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 
468(2144), 2294-2318. 

Dimitrakopoulos E. G., DeJong M. J. & Giouvanidis A. I. (2013). "Seismic assessment of rocking bridge bents 
using an equivalent rocking block".  2013 World Congress on Advances in Structural Engineering and 
Mechanics. 

Dimitrakopoulos E. G. & Giouvanidis A. I. (2014). "Seismic response analysis of the asymmetric rocking frame - 
analytical modelling". Earthquake engineering & structural dynamics, (under review). 

Kafle B., Lam N. T., Gad E. F. & Wilson J. (2011). "Displacement controlled rocking behaviour of rigid 
objects". Earthquake Engineering & Structural Dynamics, 40(15), 1653-1669. 

Kam W. Y., Pampanin S., Palermo A. & Carr A. J. (2010). "Self‐centering structural systems with combination 
of hysteretic and viscous energy dissipations". Earthquake Engineering & Structural Dynamics, 39(10), 
1083-1108. 

Makris N. & Vassiliou M. F. (2012). "Planar rocking response and stability analysis of an array of free‐standing 
columns capped with a freely supported rigid beam". Earthquake Engineering & Structural Dynamics, 
42(3), 431-449. 

Makris N. & Zhang J. (2001). "Rocking response of anchored blocks under pulse-type motions". Journal of 
engineering mechanics, 127(5), 484-493. 

Mander J. B. & Cheng C.-T. (1997). Seismic resistance of bridge piers based on damage avoidance design, 
National Center for Earthquake Engineering Research. 

Marriott D., Pampanin S. & Palermo A. (2009). "Quasi‐static and pseudo‐dynamic testing of unbonded post‐
tensioned rocking bridge piers with external replaceable dissipaters". Earthquake Engineering & 
Structural Dynamics, 38(3), 331-354. 

Palermo A., Pampanin S. & Calvi G. M. (2005). "Concept and development of hybrid solutions for seismic 
resistant bridge systems". Journal of Earthquake Engineering, 9(06), 899-921. 

Palermo A., Pampanin S. & Marriott D. (2007). "Design, modeling, and experimental response of seismic 
resistant bridge piers with posttensioned dissipating connections". Journal of Structural Engineering, 
133(11), 1648-1661. 

Pang J. B., Stanton J. F. & Eberhard M. O. (2008). A Precast Concrete Bridge Bent Designed to Re-Center After 
an Earthquake, Washington State Department of Transportation. 

Priestley M. N., Seible F. & Calvi G. M. (1996). Seismic design and retrofit of bridges, John Wiley & Sons. 
Ricker N. (1943). "Further developments in the wavelet theory of seismogram structure". Bulletin of the 

Seismological Society of America, 33(3), 197-228. 
Ricker N. (1944). "Wavelet functions and their polynomials". Geophysics, 9(3), 314-323. 
SAC. (1997). Suites of Earthquake Ground Motions [Online]. Available: 

http://nisee.berkeley.edu/data/strong_motion/sacsteel/ground_motions.html [Accessed 10 January 2014. 
Sakai J. & Mahin S. A. (2004). "Mitigation of residual displacements of circular reinforced concrete bridge 

columns".  13th World Conference on Earthquake Engineering. 
Skinner R., Tyler R., Heine A. & Robinson W. (1980). "Hysteretic dampers for the protection of structures from 

earthquakes". Bulletin, New Zealand National Society for Earthquake Engineering, 13(1), 22-36. 
Solberg K., Mashiko N., Mander J. & Dhakal R. (2009). "Performance of a damage-protected highway bridge 

pier subjected to bidirectional earthquake attack". Journal of structural engineering, 135(5), 469-478. 
Voyagaki E., Psycharis I. N. & Mylonakis G. (2013). "Rocking response and overturning criteria for free 

standing rigid blocks to single—lobe pulses". Soil Dynamics and Earthquake Engineering, 46(85-95). 
Wacker J. M., Hieber D. G., Stanton J. F. & Eberhard M. O. (2005). Design of precast concrete piers for rapid 

bridge construction in seismic regions, Washington State Department of Transportation. 

 


