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ENERGY-BASED DESIGN OF NON-TRADITIONAL STRUCTURES 
INCORPORATING HYSTERETIC DAMPERS: EXPERIMENTAL 

VALIDATION WITH SHAKING TABLE TESTS  
 

Amadeo BENAVENT-CLIMENT1  

ABSTRACT 

Different approaches have been proposed for future seismic design codes following the uniform 
conceptual framework of the Performance-Based Seismic Design. Current practices using elastic 
design procedures (force/strength methods), are being complemented in modern codes with new 
approaches that include displacement-based and energy-based design. The need for an energy-based 
methodology for earthquake resistant design of structures was recognized as early as the mid-1950s by 
Housner. One of the advantages is that it can address directly the effects of cumulative damage and 
low-cycle fatigue associated with long duration earthquakes. The energy-based approach is 
particularly appropriate in non-traditional structures incorporating passive damping mechanisms. This 
paper presents a simple energy-based design method to design a particular type of non-traditional 
structure constituted of frames and hysteretic dampers. In this procedure, the design earthquake is 
characterized with a bilinear spectrum representing the amount of energy that contributes to damage 
expressed in terms equivalent velocity, and seismological parameters related to the fault distance etc. 
The target performance level is characterized in terms of maximum inter-story drift allowed in each 
story. The procedure provides the lateral strength, lateral stiffness and energy dissipation capacity 
required to the dampers to be installed in each story. Finally, seismic simulations conducted recently 
with the shaking table of the University of Granada are presented. The experimental results are 
compared with the maximum response predicted with the proposed energy-based procedure. It is 
concluded that the later provides satisfactory results.   

INTRODUCTION 

 Performance-based seismic design (PBSD) concepts provide a suitable framework for future 
seismic code development. Implementing PBSD concepts require design methodologies able to cope 
directly and quantitatively with important aspects of the structural response such as the cumulative 
damage and the low-cycle fatigue effects. Also, these methodologies must be able to deal with the 
design of non-traditional structures such those that incorporate hysteretic dampers. The energy-based 
approach provides a general framework to implement the concepts of the PBSD in a practical and 
simple design formulation, since it gives a full understanding on the behaviour of the structure up to its 
collapse state, and it allows an explicit and quantitative control of the damage endured by the structure 
under a given level of seismic hazard. Further, the energy-based approach is particularly appropriate in 
non-traditional structures incorporating passive damping mechanisms (Soong and Dargush, 1997). 
 The earthquake resistant design approach is based on the balance of the total energy input 
exerted by the earthquake and the energy absorbed by the structure. One of the main benefits of this 
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approach relies on the fact that the total energy input due to an earthquake is a very stable amount 
governed by the total mass of the structure and its fundamental period, and it is scarcely influenced by 
the other parameters such as mass, stiffness or strength distribution. The need for an energy-based 
methodology for earthquake resistant design of structures was recognized as early as the mid-1950s by 
Housner, and the fundamental framework has been established by Akiyama (1985, 1999) and other 
researchers.  
 This paper resents an energy-based procedure to design a particular type of non-traditional 
structure consisting of frames with hysteretic dampers in all stories. For the sake of simplicity, in the 
present form, the method assumes that the main structure (i.e. the frame) remains elastic. In the design 
of new structures with hysteretic dampers, this condition can be relaxed and some plastic deformations 
can be allowed in order to reduce the demands on the dampers. The appropriate energy-based 
procedure for addressing this case is not covered here due to length limitations of the paper. The 
energy-based method is validated with the results of seismic simulations conducted recently on a 
reinforced concrete (RC) frame structure equipped with hysteretic. The paper puts emphasis on the 
key aspects on which the formulation hinges on.  

BACKGROUND 

The equation of dynamic equilibrium of an inelastic multi degree-of-freedom system (MDOF) 
subjected to a unidirectional horizontal ground motion is given by: 

                    gz&&&&& rM=Q+yC+yM − ,                                                        (1) 

Here, M is the mass matrix, C the damping matrix and Q(t) the restoring force vector; (t)y&&  and 

)(ty& are the acceleration and velocity vectors relative to the ground; gz&&  is the ground acceleration,  

and r represents the displacement vector (t)y resulting from a unit support displacement. Multiplying 

Eq. (1) by dt=d yy &  and integrating over the entire duration of the earthquake, i.e. from t=0 to  t=to, 
the energy balance equation becomes:  

                                  E=W+W+W sξk .                                                               (2) 

Where ∫ dt=Wk yMyT
&&&  is the kinetic energy; ∫ dt=Wξ yCyT

&& is the damping energy; ∫ dt=Ws QyT
&  

is the absorbed energy, which is composed of the recoverable elastic strain energy, Wse, and the 

irrecoverable plastic energy, Wp, i.e. Ws=Wse+Wp; and dtz=E g∫− &&& Mr yT is, by definition, the input 

energy which can be expressed in the form of an equivalent velocity VE as: 

M

E
=VE

2
.                                                                 (3) 

Where M is the total mass of the structure. Since Wk +Wse is the elastic vibrational energy, We, the 
equation (2) can be rewritten as:  

                                      ξpe WE=W+W −                                                               (4) 

Further, We+ Wp can also be expressed in the form of an equivalent velocity VD so that: 

2

2
D

pe

MV
WW =+ .                                                             (5) 

In the energy-based seismic design approach, the VE‒T spectrum characterizes the loading effect of 
the earthquake for a given level of seismic hazard. Design input energy spectra VE‒T have been 
proposed in past studies (Zahrah 1984, Akiyama 1985; Benavent-Climent et al, 2002). The term Wp 
characterizes the cumulative damage (i.e. plastic strain energy) of the structure. Wp+We is what 
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Housner (1956) called the energy that damages a structure subjected to seismic action. For undamped 
systems VD=VE; otherwise (VE ̶VD) is the energy dissipated by the inherent damping of the structure. 
Several empirical expressions have been proposed that allow us to obtain VD from VE (Akiyama 1985; 
Kuwamura and Galambos 1989; Fajfar and Vidic 1994; Benavent-Climent et al 2002; Benavent-
Climent et al 2010). Moreover, attenuation relationships have been established (Chou and Uang, 2000) 
that directly provide Ws —the absorbed energy— for a given earthquake magnitude, source-to-site 
distance, site class and ductility factor, in terms of an equivalent velocity Va defined by  

M

W
V S

a

2= .                                                                       (6) 

STRUCTURAL MODEL AND DESIGN CRITERIA  

 The main frame is idealized with a lumped-mass shear model. The mass of each story i will be 
referred to as mi hereafter. At each story i, the main frame is assumed to remain elastic up to a lateral 
inter-story drift fδyi, and the mechanical properties are characterized by the lateral yield strength, fQyi 
and the lateral stiffness fki (=fQyi/fδyi). The fundamental period of the main frame (without dampers) is 
denoted as T1. The hysteretic dampers installed in a given story i are arranged so as to form a dual 
system consisting of two inelastic springs connected in parallel. The lateral load-displacement 
relationship, fQi-δi, of a given i-th story under monotonic loading is represented in Figure 1. The 
hysteretic characteristics of the dampers are assumed to be elastic-perfectly-plastic, and in each story i 
they provide a lateral strength sQyi and a lateral stiffness ski as shown in Figure 1. 
 

     
Fig. 1: Idealized inter-story drift-shear force curve of each story i 

 
The goals of the energy-based procedure are: (i) to determine the sQyi and ski of the dampers needed 

in each story to achieve the required building performance levels, expressed in terms of maximum 
allowed displacement δmaxi, for a given earthquake hazard; and (ii) to evaluate the energy dissipation 
demand on the hysteretic dampers. To keep the main frame within the elastic range, it is imposed that:  

yifmaxi δδ ≤ .                                                                        (7) 

Accordingly, the lateral yield strength of the entire frame-device structure at the i-th story, Qyi, is:  

ifyisyisifyisyi kδ+QQ+Q=Q =max,                                                     (8) 

where sδyi (=sQyi /ski) is the yield deformation of the dampers and fQmax,i=δmaxi⋅fki is the maximum 
lateral force sustained by the frame, both at the i-th story. For the building-device structure surviving 
the earthquake, the plastic strain energy accumulated in the i-th story, Wpi, must not exceed the 
ultimate energy dissipation capacity of the dampers installed in that story, Wui. In turn, Wpi and Wui can 
be expressed in the form of two non-dimensional coefficients ,ηi  and ηui, defined by:  

yisyis

pi
i

δQ

W
=η            ;         

yisyis

ui
ui

δQ

W
=η                                              (9) 

thus, the above condition can be written as:   

uii ηη ≤ .                                                                    (10) 

    



4 
 

 
FORMULATION OF THE METHOD 
 
For the sake of convenience, δmaxi, Qyi, fQmaxi, sQyi and fk1 will be expressed herein by the plastic 
deformation ratio µi, the shear-force coefficients αi, fαmaxi, sαi, and the stiffness ratio χ1,defined by:    

yis

yismaxi
i

δ

)δ(δ
=µ

−
 ;   

∑
N

i=k
k

yi
i

gm

Q
=α  ;  

∑
N

i=k
k

maxif
maxif

gm

Q
=α   ;  

∑
N

i=k
k

yis
is

gm

Q
=α   ;   

eq

f

k

k
=χ 1

1     (11) 

Here, N is the total number of stories, g is the acceleration of the gravity, keq=4π2M/T1 
2 and the base 

story is taken as i=1. 

Stiffness distribution of the dampers among the stories  

The ratio between the lateral stiffness of dampers and main frame in each story is referred to as:  

if

is
i k

k
=K                                                                   (12) 

In choosing the values Ki the following considerations must be taken into account. Oviedo et al (2010) 
defined a strength ratio βmin,1 for the base story as: 

βmin,1=sQy1/(sQy1+fQy1)                                                           (13) 
and recommended 0.2≤βmin,1≤0.5 because in this range the protection to the main frame due to the 
dampers is maximized. The proposed method enforces that the yield story-drift ratio: 

νi=sδyi/fδyi                                                                    (14) 
must be less than 1 to guarantee minimum protection to the main frame. Oviedo et al (2010) 
recommended using low values of νi (less than about 0.4) because: (i) it makes more effective the 
protection to the main frame; and (ii) tends to widen the “uniform” range of the βmin,1 at which the 
protection of the main frame with the dampers is maximized and kept almost invariant irrespective of 
βmin,1. As pointed out by Oviedo et al (2010), widening this range has a relevant impact on engineering 
practice because the structural performance would be less affected in the case of modifications of βmin,1 
due to uncertainties such as construction and on-site installation practices and/or material strength 
reliability.  

 
Inoue and Kuwahara (1998) defined a similar strength ratio: 

        βi=sQyi/(sQyi+fQmax,i)                                                             (15) 
and proposed the following optimum value: 

 βopt,i=1-(Ki+1)-0.5                                                                (16)  
It is worth noting that if the base story of main frame is on the brim of yielding, i.e. fQmax1= fQy1, then 

βmin,1=βi.                                                                        (17) 
Akiyama (1999) characterized the strength ratio between the dampers and the main frame by: 

 rq,i=sQyi/fQmax,i                                                                  (18) 
that is obviously related to βi by: 

βi=(1+rq,i )
-1                                                                      (19) 

The optimum value rq,opt,i is obtained making βi=βopt,i  in Eq. (18), using Eq.(14) and solving for rq,i: 

1
11

1
,, −

−+
+

i

i
ioptq

K

K
=r                                                              (20) 

If the maximum inter-story drift allowed by Eq. (7) is adopted, i.e. δmax,i=fδy,i, Ki can be expressed in 
terms of νi and rq,i as follows: 

     
iiq

i r
=K

ν,

1
                                                                         (21) 
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Making rq,i=rq,opt,i in Eq.(20), using Eq. (19) and solving for Ki, the following relation is obtained 
between Ki and νi when the optimum strength ratio rq,opt,i is used and the frame is allowed to displace 
laterally up to the onset of yielding δmax,i=fδy,i:  

2

21

i

i
i =K

ν
ν−

                                                                (22) 

Eqs. (19) and (21) are plotted in Figure 2, and it can be seen that for a reasonable range of 0.15≤νi≤0.4 
the stiffness ratio varies from Ki=1.25 to Ki=15.  
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Fig. 2: Relationship between νi , Ki and rq,opt,i  for δmax,i=fδy,i   

 
There is no need to make Ki equal in all stories, although this criterion has been often used in the past 
(Inoue and Kuwahara, 1998).  

Strength distribution of the dampers among the stories 

The lateral strength distribution of the entire building-device structure, Qyi/Qy1, can be expressed in 
terms of shear-force coefficients by iα =αi/α1. The criterion adopted in the proposed method to 

determine the iα distribution is to attain an approximately even distribution of damage among the 

hysteretic dampers. The damage in the dampers installed in a given story i can be characterized by the 
non-dimensional parameter ηi defined by Eq.(9). Past studies (Akiyama 1985) showed that the 
strength distribution iα that makes ηi approximately equal in all stories (ηi=η) in a low- to- medium 

rise multi-story building subjected to seismic loads coincides with the maximum shear-force 
distribution in an equivalent elastic undamped shear strut with similar stiffness distribution, and can be 
approximated by (Benavent-Climent, 2011):   
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Here N)(i=x /1− , f kN is the lateral stiffness of the uppermost N-th story of the main structure, and 
TG (predominant period of the ground motion) defines the change of slope of the VD-T bilinear spectra. 
From the definition of sαi and Ki given by Eqs.(11) and (12), the following relation must be satisfied:  

)1(
)1(

1

1
1 +

+=
i

i
siis KK

KKααα                                                            (24) 

Lateral strength to be provided by the EDDs of the first story  

Once the Ki‘s are fixed and assuming the lateral force distribution given by Eq. (23), the 
lateral shear-force coefficient to be provided by the dampers of the first story, sα1, must be calculated 
in order to obtain the required lateral shear force coefficient of the dampers in the other stories sαi with 
Eq.(24). The equation that governs the sα1 required for a given seismic hazard and building 
performance level are derived next by establishing the energy balance of the structure.  
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 Neglecting the elastic strain energy stored by the dampers, the elastic vibrational energy of the 
whole building, We, can be approximated from the maximum shear force sustained by the main 
structure on the first story as follows (Akiyama, 1985):  

24π

2

2

2
1

2
max1f

e

αTMg
=W .                                                        (25) 

From Eq.(9) and taking into account the coefficients defined in Eq.(11), the plastic strain energy 
accumulated in the i-th story Wpi can be expressed as follows: 

is

N

i=k
kisi

is

yis
iyisyisipi k

)gm(αη=
k

Q
η=δQη=W

122
2

∑ .                                  (26) 

Provided that the strength distribution given by Eq.(23) is adopted, ηi can be assumed equal in all 
stories, i.e. ηi=η. Thus, taking into account Eq.(12) and using the non-dimensional parameters sαi and 

iα defined above, the total plastic strain energy dissipated by the dampers of the whole structure, Wp, 

can be expressed in terms of the plastic strain energy dissipated by the dampers of the first story, Wp1, 
by introducing a new ratio γ1=Wp/Wp1, which is obtained as follows: 
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∑ ∑
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         (27)  

thus  

Wp=γ1Wp1=
1

2
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111 k
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TgMs        (28) 

Substituting Eqs.(25) and (28) in Eq.(5) gives:   

224

2
2
1

11

1

2
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2

2
1

2
D

s
f MV

K

TMg =







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


+ αηχ

γα
π

.                                       (29) 

A new parameter αe is now introduced that represents the base shear-force that the main structure 
should have in order to absorb by itself —i.e. without dampers— the amount of input energy MVD

2/2 
supplied by the earthquake.  

1

2

gT

VD
e

πα =  .                                                               (30)  

Using Eq.(30), Eq.(29) can be rewritten as follows: 

                 
22

2
2
1

11

1

2
1max e

s
f

K
ααηχ

γα
=+ .                                              (31) 

The relation between ηi=η and µi is a key parameter in the energy-based seismic design and it has 
been addressed in different ways in the past (Akiyama 1985; Akiyama, 1999; Uang and Bertero, 1990; 
Cosenza and Manfredi 1997; Manfredi 2001; Manfredi et al, 2003). Based on the results of regression 
analyses performed with 128 near-fault and 122 far-field earthquake records, Manfredi et al. (2003) 
proposed the following formulae for estimating the equivalent number of plastic yield excursions neq at 
the maximum deformation that a single-of-freedom (SDOF) system of mass m, elastic period T and 
yielding force Fy must develop in order to dissipate the total amount of hysteretic energy input by the 
earthquake: 
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2
1 11

cNH
deq )(R

T

T
Ic+=n − .                                                 (32) 

Here TNH is the initial period of medium period region in the Newmark and Hall (1982) spectral 
representation. R is the reduction factor defined as R=mSa/Fy where Sa is the elastic spectral 
acceleration. Id is a seismological parameter (Cosenza and Manfredi, 1997) defined by  

PGVPGA

dtz
I

ot

g

d ⋅
= ∫0

2
&&

                                                            (33) 

where PGA and PGV are the peak ground acceleration and velocity, respectively. In Eq.(22), Manfredi 
et al. (2003) proposed to take c1=0.23, c2=0.4 for near-fault earthquakes; and c1=0.18, c2=0.6 for far-
field earthquakes. For the dampers with elastic-perfectly-plastic characteristics dealt with in this study, 
neq is by definition (Manfredi et al, 2003): neq=Wpi/[sQyi(δmaxi−sδyi)], which coincides with ηi/µi  for a 
given story i. Further, to apply equation (32) to the proposed method, the multi-story structure is 
assimilated to an equivalent SDOF system with elastic period T1, mass M and Fy=sQy1+fk1⋅sδy1. Taking 
into account that Sa is approximately equal to (2π/T)Sv, and that the elastic spectral velocity Sv 

coincides approximately with VD (Housner, 1956; Akiyama 1985), Eq.(32) can be rewritten as:   
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                                       (34) 

Akiyama (1999) proposed simpler design expressions for ηi/µi that depend on the strength ratio rq,i 
and the hysteretic rule. For elastic-perfectly plastic systems: 

for rq,i ≤1.0:  qieqii rn= 44/ +=µη                                                        (35) 

for rq,i >1.0:  8/ =eqii n=µη                                                                 (36) 

For systems which displacement-restoring force curve exhibit stiffness degradation (Clough model):  
for rq,i ≤1.0:  qieqii r=n= 25.175.3/ +µη                                              (37) 

for rq,i >1.0:  5/ =eqii n=µη                                                                 (38) 

In the proposed method, the same neq=ηi/µi=η/µ is adopted for all stories. Since ηi was also assumed 
as constant, i.e. ηi=η  because the optimum distribution iα   was adopted,  the maximum plastic 

deformation ratio µi has the same value µi=µ (=η/neq) in all stories. On the other hand, taking into 
account Eq.(7), the maximum base shear-force coefficient of the main structure fαmax1 is: 

Mg

kf
f

11max
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δ
α = .                                                                                               (39)                                

From the definition of µi (=µ) —Eq.(11)— particularized for the first story, it is obtained that   
δmax1=sδy1(µ+1), and substituting in Eq.(39) gives: 
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Substituting Eq. (40) in Eq.(31), recalling that µ=µi=η/neq and solving for µ gives: 
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For the other stories µ=(δmaxi−sδyi)/sδyi, then, using Eqs.(24) and (41), and solving for δmaxi gives the 
equation that predicts the maximum displacement of a given story i:  
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PROCEDURE  
 
First, a preliminary design of the main frame (without dampers) is made, and the basic properties mi, 
fki, fδyi and T1 are determined by using approximate formulae or by creating a finite element based 
model and performing a pushover analysis. The main frame must be designed to remain elastic under 
the action of the gravity loads and the imposed lateral displacements relative to the ground 

∑ =
= i

s sallowid
1 ,δ applied at each floor i. Here δallow,s is the maximum inter-story drift at story s 

determined by the designer according to the predetermined seismic performance level sought for a 
given earthquake hazard.  The goal of the proposed method is to determine the lateral stiffness ski, the 
lateral strength sQyi, and the normalized energy dissipation demand η of the dampers to be installed in 
each story i, so that δmax,i≤δallow,i for a given earthquake hazard. The basic steps involved in the 
procedure are summarized as follows. 

Step 1: Characterize the earthquake hazard level. If neq is being calculated with Eq.(34) the earthquake 
hazard must be characterized in terms of VD, TG, TNH, Id and the proximity to the source. If Eqs.(35)-
(38) are being used for estimating neq, only VD and TG are required. 

Step 2: Prescribe the maximum inter-story drift allowed in each story i, δallow,i, in accordance with the 
acceptance criteria for building components at the target performance level. Adopt a limiting value for 
νi. As explained in previous section, νi must be smaller than 1 and adopting smaller values for νi 

improves the efficiency of the system.  

Step 3: Calculate iα  for each story i with Eq.(23), αe with Eq.(30) and χ1 with Eq.(11).  

Step 4: Choose a set of values for Ki, and compute γ1 with Eq.(27). From i=1 to i=N proceed for each 
story as follows. Starting with sα1=0, iterate in Eq.(42) —with neq given by Eq.(34) or by Eqs.(35) to 
(38) —  increasing the values of sα1 until the predicted δmaxi gets close to δallowi within an acceptable 
tolerance. In these iterations, sα1 shall not be larger than the value given by the following expression, 
so that sδyi≤(νi fδyi): 

)()1(

)1(

11
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∑ =
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iifyifi
s

gmK

KKK

α
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α                                                    (43) 

Above expression is obtained using Eqs.(11), (24) and making sδyi≤(νi fδyi).  If in a given story i it is 
not possible to find a sα1 that makes δmaxi close enough to δallowi, restart step 4 with different values for 
Ki. If a satisfactory solution is not found with reasonable values of Ki, the preliminary design of the 
main frame should be modified, the new values of fki, fδyi and T1 should be calculated and the procedure 
should be restarted in Step 3. Once the appropriate sα1 is obtained, keep this value as sα1i=sα1 and 
proceed with the next story. The parameter sα1i represents the shear-force coefficient required for the 
dampers of the first story so that the maximum inter-story drift at the i-th story does not exceed δallowi.   

Step 5: Select the maximum of the sα1i, i.e. sα1max=max{sα1i}, which gives the required lateral strength 
for the dampers of the first story. Obtain the lateral strength required in the other stories, sαi, by 
making sα1=sα1max in Eq.(24). Calculate the lateral stiffness ski and the lateral strength sQyi required for 
the dampers of each story taking into account Eqs. (11) and (12).   

Step 6: Once the lateral stiffness ski and the lateral strength sQyi of the EDDs to be installed in each 
story are determined, an appropriate type of hysteretic damper must be chosen. To this end, it is 
necessary to check that the normalized ultimate energy dissipation capacity of the damper ηui is larger 
than the demand ηi (=η) as indicated by Eq.(10). η is simply calculated by making sα1=sα1max in 
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Eq.(34) or using Eqs. (35)-(38) to obtain neq, substituting this neq and sα1=sα1max in Eq.(41) to calculate 
µ (=µi), and recalling that η=neqµ.  The estimation of ηui for a given type of hysteretic damper is 
beyond the scope of this paper; yet a procedure is proposed by Benavent-Climent (2007).  

 

EXPERIMENTAL VALIDATION 
 
To validate experimentally the proposed method, dynamic tests were conducted on a 2/5 scale 

model with the 3×3m2 shaking table of the University of Granada. Figure 3 gives an overall view of 
the tests. The test structure consisted of a reinforced concrete frame with one-and-half stories and one-
and-half spans. Two brace-type hysteretic dampers were installed in each story as shown in Fig. 3. The 
structure was subjected to a sequence of seismic simulations in which a ground motion record 
recorded at Calitri (Italy) during the 1980 Campano-Lucano earthquake was scaled in time by (2/5)0.5 
and in acceleration to levels of increasing intensity. One of the seismic simulations, referred to as 
C200 hereafter, represented the design earthquake prescribed by the Spanish seismic code for Granada 
(Spain). The seismic simulation C200 was carried out scaling the earthquake record to a peak 
acceleration of 0.31g. During this simulation, the main structure remained elastic and all plastic strain 
energy consumed by the system was dissipated by the dampers. The maximum lateral inter-story drift 
measured in the first (ground) story during this simulation was 0.89 cm, which represents 0.64% of the 
first story height. A detailled description of the test can be found elsewhere (Benavent-Climent et al, 
2014). Hereafter, the maximum inter-story drift meassured in the first story during seismic simulation 
C200 (0.89 cm) is compared with the prediction provided by the procedure explained in is paper.      

  

 
Fig. 3: Overall view of the shaking table test 

 
To predict the maximum displacement with the proposed procedure, first the parameters VD, TG, TNH, ID 
that characterize the seismic shaking applied to the table during simulation C200 were determined 
from the measurements provided by the instrumentation during this test (i.e. the actual acceleration 
measured in the shake table), giving VD=61cm/s; TG=0.75s, TNH=0.9s and ID=23.5. The test model was 
idealized with a two-mass lumped model. The mass lumped at the first and second floor levels were, 
respectively, m1=6480 kg and m2=5970 kg. The lateral stiffness fki and strength fQyi of the frame 
(without dampers) estimated with a numerical model gave fk1=2 kN/mm, fQy1=17.6 kN, and fk1=1.2   
kN/mm, fQy2=15.3 kN, for the first and second stories. The fundamental period of the frame (without 
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dampers) was T1=0.564s. The stiffness ratio of the first story was K1=10 and the base shear force 
coefficient provided by the dampers sα1=0.45.  Using Eq.(34) for estimating neq with c1=0.18 and 
c2=0.6 (far-field earthquake), the proposed formulation predicts a maximum lateral displacement of 
δmax,1=0.83 cm, which is very close to the experimental result (0.89 cm).  

 

CONCLUSIONS 

An energy-based design procedure is presented to design multi-story frames with hysteretic dampers. 
The procedure provides the lateral strength, the lateral stiffness and energy dissipation capacity 
required for the dampers to be installed in each story to achieve a desired building performance level 
for a given earthquake hazard. The maximum allowed inter-story drift controls the target performance 
level. The earthquake hazard is characterized in terms of energy input and several seismological 
parameters used in the literature. With this method, the effect of the hysteretic dampers is recognized 
directly in terms of hysteretic energy, without having to resort to equivalent viscous damping 
approximations; further, the cumulative damage induced in the dampers is explicitly evaluated. The 
validity is assessed experimentally by means of shake table tests.  
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