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ABSTRACT 

One of the most widely implemented and accepted seismic protection systems is base isolation. 

However, because optimal design of base isolation depends on the intensity of the design level 

earthquake that is considered, the reduction of the seismic response is not optimal for a wide range of 

input ground motion intensities. In this paper, a smart base isolation system is proposed by combining 

traditional base isolation systems with magnetorheological (MR) dampers to achieve specified control 

target performance. This study employs four algorithms: discrete wavelet transform (DWT), particle 

swarm optimization (PSO), linear quadratic regulator LQR, and clipped-optimal control algorithm. 

DWT is used to obtain the local energy distribution of the motivation over the frequency bands. PSO 

is used to determine the gain matrices through the online update of the weighting matrices used in the 

LQR controller while eliminating the trial and error. A clipped-optimal control algorithm is used in 

order for the MR damper control force to approach the desired optimal force that is obtained from the 

modified LQR. Moreover, Bouc-Wen phenomenological model is utilized to investigate the nonlinear 

behaviour of the MR dampers. The advantage of the proposed control algorithm is the improvement of 

the performance of a conventional base isolation system via a semi-active MR damper that can change 

damping coefficient continuously. The design and control method is applied to a base-isolated two-

degrees-of-freedom system implementing magnetorheological dampers subject to several historical 

near-fault ground motions. The results indicate that the proposed method is more effective at reducing 

the displacement response of the base isolation in real time when compared to a traditional base 

isolation systems or a base isolation system with an MR damper that employed a classical LQR 

control method.  

INTRODUCTION 

 

Base isolation is arguably one of the most effective solutions to protect structures subject to 

earthquake excitations.(Skinner et al.1993; Naeim and Kelly 1999). In base isolation systems, 

nonlinear devices such as lead-rubber, friction pendulum bearings, or high damping rubber bearings 

are often used to restore force and obtaining adequate damping capacity. However, the vibration 

reduction is not optimal for a wide range of external excitations as a result of the nonlinear behaviour 

of these devices. The effectiveness of many passive base isolation systems has been questioned when 

dealing with high-velocity, long period pulse or near-fault earthquakes, and when resonance occurred 
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as per other passive systems. To address the shortcomings of passive control systems, semi active 

control systems have been introduced in the past decades (Spencer and Sain., 1997). Semi-active 

control has two main benefits over active and passive systems. First, it does not require much 

energy/power to tune the characteristics of the damping devised and significantly reduce the seismic 

response. Second, these systems can provide abroad range of control that a passive system, by nature, 

cannot. Moreover, semi-active devices cannot in principle destabilize the structure because they do not 

input additional energy to the system but simply absorb or store vibratory energy (Chase et al., 2006). 

Because of this low dependence on external power sources and the removal of instability concerns, 

semi–active systems may become an attractive solution for the improvement of reliability of low-

damage (e.g. rocking dissipative) and base isolation systems, regardless of the uncertainties of the 

input ground motions. Among many other semi-active supplemental damping devices that could be 

used within a structural system, magnetorheological (MR) dampers can achieve high-level adaptive 

performance (Spencer et al 1997)(Figure 1). Mechanical simplicity, high dynamic range, low power 

requirements, large force capacity, high stability, robustness, and reliability are among the desirable 

features of MR dampers. MR dampers are capable of generating controllable damping forces by using 

MR fluids. MR fluids are composed of magnetized tiny particles that are scattered in a mineral liquid 

such as silicon oil. When a magnetic field is applied to this liquid, particle chains form in just a few 

milliseconds, and the fluid becomes a semi-solid which exhibits plastic behaviour.  

 

 

Figure 1: Large-scale semi-active damper schematic (Yang et al., 2002). 

 

Because of the advantages of semi-active systems and the need for development of base 

isolation systems that can be effective for a wide range of earthquakes, smart base isolation systems 

that combine passive isolation systems with semi-active systems have been investigated by a number 

of researchers, based on the implementation of electrorheological (ER) or magnetorheological (MR) 

dampers (Yang et al. 1995, 1996; Makris 1997; Johnson et al. 1999; Symans and Kelly 1999; Yoshida 

et al. 2002; Ramallo et al. 2000a,b ; Yang and Agrawal 2001). The effectiveness of semi-active base 

isolation for a single span bridge model using MR dampers was experimentally shown by Nagarajaiah 

et al. (2000). The MR damper requires lower voltage than the ER damper which is very attractive for 

safety and practical reasons (Carlos et al 1996). This justifies why most practical applications use MR 

fluids. 

There are two types of dynamic models for the MR dampers: non-parametric models and 

parametric models. Many non-parametric models have been used to control the dynamic behaviour of 

MR dampers such as neural network-based models (Wang and Liao, 2005) and fuzzy logic-based 

models (Kim et al., 2008). The Bingham model (Lee and Wereley, 2002), non-linear hysteretic bi-

viscous model (Kamath and Wereley, 1997), hyperbolic tangent model (Christenson et al., 2008) and 

Bouc-Wen hysteresis model (Jansen and Dyke, 2000) are some of the parametric models that have 

been used to model the behaviour of MR dampers. 

To characterize the behaviour of MR fluid dampers, Spencer et al. (1997) introduced the simple 

Bouc-Wen model. This model can predict the force-displacement and force-velocity behaviour well, 

and the results obtained from this model are similar to the experimental data. However, the simple 

Bouc-Wen model cannot capture the force roll-off when the acceleration and velocity have opposite 
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signs and the magnitude of the velocities is small. Therefore, to overcome this drawback, Spencer et 

al. (1997) proposed a modified version of the Bouc-Wen model with higher level of accuracy.  

Using an appropriate control algorithm is very important in order to achieve the desirable 

control performance via modifying the magnitude of the applied magnetic field according to a defined 

algorithm. Comprehensive studies have been done to determine the optimal actuator force for active- 

control systems. The most widespread methods are LQR, LQG, H2, and H∞ (Chin, 2013). The LQR is 

used widely by many researchers to determine the appropriate control force. However, classical 

control algorithms such as LQR suffer from some inherent shortcomings for structural applications. 

For instance, one of the major shortcomings of the LQR algorithm for application to forced vibration 

control of structures is its inability to explicitly account for the excitation. To simulate realistic 

circumstances, the excitation must be known prior to determining the optimal control force to achieve 

more reliable solutions. The effect of the specific earthquakes has been accounted for in a few studies 

(Wu et al., 1998, Wu et al., 1994). For example Panarillo et al. (1997) introduced a method based on 

updating weighting matrices from a database of earthquakes. Nonetheless, in these studies, offline 

databases were still required. Basu et al. (2008) and Amini et al. (2013) proposed a wavelet-based 

adaptive LQR and wavelet PSO-based-LQR (WPSOB-LQR) control to design the controller by 

updating the weighting matrices, respectively. These methods determine the time-varying gain 

matrices by updating the weighting matrices online, through the Ricatti equation (Basu et al 2008). 

Therefore, these methods do not need prior information on the external excitation, hence eliminating 

the need for an offline database. 

In this article the feasibility and efficiency of a smart base isolation with MR dampers modelled 

using a modified Bouc-Wen model is discussed. Moreover, a Clipped-optimal control algorithm based 

on WPSOB-LQR is employed to find the optimal control force of MR dampers. The application of 

proposed approach to a number of pulse-like near ground motions is presented, and the efficiency of 

adding MR dampers in base isolation is evaluated.  

MODIFIED BOUC-WEN MODEL  

 

The schematic of the MR damper mechanical model for the modified Bouc-Wen model is 

shown in Figure 2b.In this case, the nonlinear force of MR damper is calculated by (Yang et al., 2002): 

 

                                                     (1) 

 

 

Where α is Bouc-Wen model parameter related to the MR material yield stress and z is 

hysteretic displacement of model given by: 

 

                                                  (2) 

 

 is defined as:  

                                                                                                                       
(3) 

 

Where c0 is the viscous damping parameter at high velocities; c1 is the viscous damping 

parameter for the force roll-off at low velocities; k0 controls the stiffness at large velocities; k1 

represents the accumulator stiffness; x0 is the initial displacement of the spring stiffness k0; ɣ, β and A 

are adjustable shape parameters of the hysteresis loops, i.e., the linearity in the unloading and the 
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transition between pre-yielding and post-yielding regions. 

 

Figure 2:  Mechanical model for MR damper: (a) Simple Bouc-Wen model, (b) modified Bouc-Wen model. 

 

Optimal performance for MR damper control systems is gained by varying the applied voltage 

to the current driver according to the measured feedback at any moment. Thus, to determine a 

comprehensive model that is valid for fluctuating magnetic fields, the parameters α, c0, c1 and k0 in 

Equations 1-3 are defined as a linear function of the efficient voltage u as given in Equation 4 to 

Equation 7. 

                                                                                                           (4) 

                                                                                                        (5)      

                                                                                                        (6) 

                                                                                                        (7) 

 

To accommodate the dynamics involved in the MR fluid reaching rheological equilibrium, the 

following first order filter is employed to calculate efficient voltage, u. 

 

                                                                                                               (8) 

 Where, v and u are input and output voltages of a first-order filter, respectively; and ɳ is the 

time constant of the first-order filter. Figure 3 illustrates the comparison between the response of this 

model and the experimental results for a 3kN MR damper in a real control condition that a damper 

would face during the control time. It is obvious that this model is capable of predicting MR damper 

nonlinear behaviour very well.  

 

Figure 3: Predicted response by the Bouc-Wen phenomenological model in comparison with the 

experimental data for a 3kN MR damper in a control simulation test (Spencer et al., 1997). 
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INTEGRATED STRUCTURE-MR DAMPER SYSTEM  

When n-degree-of-freedom (N-DOF) systems with base isolation and r MR dampers are subjected to 

external excitation and control forces, the governing equations of motion can be written as: 

                                                             (9) 

where C, and K  are the mass, damping, and stiffness matrices of the structure without dampers, 

respectively. If “q” in Equation 9 is taken as the relative displacement with respect to the ground, then 

mass matrix M is considered to be diagonal. The damping matrix C takes a form similar to the 

stiffness matrix K. 

                                                                                                   (10) 

The displacement vector is defined as q(t) = (n+1)×1 where qi is the displacement of i
th
 floor 

relative to ground (i = 1, 2, . . . , N+1); the control force vector exerted by damper, u(t), is of the order 

l×1, and fe(t) is the external dynamic force vector of dimension r × 1, L and H are (n+1) × l and (n+1) 

×r location matrices, which define locations of the control forces and the external excitations, 

respectively. A state-space representation of Equation 9 can be written as: 

                                                                                     (11) 

Where 

                                                                                                                    (12) 

{x} is the state vector of dimension 2n × 1, and 

                                                                                                             (13) 

                                                                                                   (14) 

                                                                                                                     (15) 

                                                                                                                     (16) 

 

2(n+1) ×2(n+1), 2(n+1) ×l, and 2(n+1) ×r are the system matrix, control location, and external 

excitation location matrices, respectively. The matrices “0” and “I” in Equations 14 to 16 denote the 

zero and identity matrices of size (n+1) ×(n+1), respectively. The LQR algorithm can determine the 

optimal control forces for the system with the aim of minimizing the cost function. The cost function 

is a quadratic function of the control effort and the state. The cost function is defined as  

                                                                        (17) 

The matrices Q and R are referred to as the response and control energy weighting matrices, 

respectively. The weighting matrices Q and R are selected in classical LQR at the first step. The 

control force is given by Equation (13) where the gain matrix is obtained from the discrete algebraic 

Riccati equation.  

Semi-active control systems are typically highly non-linear. One algorithm that has been shown 

to be effective for use with the MR damper is a clipped-optimal control approach, proposed by Dyke, 

et al. (1996). The clipped-optimal control approach is to design a linear optimal controller that 

calculates a vector of desired control forces based on the measured structural responses and the 

measured control force vector applied to the structure. If the magnitude of the force produced by the 

damper is smaller than the magnitude of the desired optimal force and the two forces have the same 

sign, the voltage applied to the current driver is increased to the maximum level so as to increase the 
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force produced by the damper to match the desired control force. Otherwise, the commanded voltage 

is set to zero. The algorithm for selecting the command signal for the MR damper is stated as 

 

                                                                                              (18) 

Although a variety of approaches may be used to design the optimal controller, LQR methods 

are advocated because of their successful application in previous studies. The approach to optimal 

control design is discussed in detail in (Mohajer Rahbari 2013). 

 

Figure.4.Block diagram of semi-active control system 

MODIFIED LQR METHOD  

 In this study, the real time discrete wavelet transform (DWT) controller is updated at regular time 

steps from the initial time (t0) until the current time (tc) to achieve the local energy distribution of the 

motivation over frequency bands. The time interval under consideration [t0, tc] is sub-divided into time 

window bands. The time of i
th
 window is [ti-1, ti] of which the signal can be decomposed into time 

frequency bands by wavelet. Through a DWT with multi-resolution analysis (MRA) algorithm the 

exact decomposition of signals over a time window bands are obtained in real time. The local energy 

content at different frequency bands over the considered time window are given by the MRA. 

Obviously, the frequency containing maximum energy is the domain frequency within that window. 

When the domain frequency of each window is close to the natural frequency of the system, resonance 

can occurred in the structure. This could lead to much higher than expected displacement response 

(thus potential damage) in system. To mitigate the displacement response of the structural systems, a 

high control force is needed that can be obtained with decreasing the value of the control energy 

weighting matrix [R]. The advantage of this local optimal solution is that it has the ability to change 

the value of the matrix R on specific frequencies in contrast to the classical LQR which is a global 

optimal solution. To achieve this, the control energy weighting matrices are updated for every time 

window by a scalar multiplier and can be defined as: 

                                                                                                                    (19) 

where δi is a scalar parameter used to scale the weighting matrix and is obtained via PSO 

algorithm based on the time-frequency analysis of a response state. Hence, the scalar parameter of 

gain matrix can be written as: 
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                      if the frequency of the excitation is close to the natural frequency of system, 

                     otherwise. 

The value of has been proposed as less than one when resonance occurs. This allows changing the 

weighting matrices for different frequency bands.  

PSO algorithm starts with a random population (swarm) of individuals (particles) in the search 

space and works on the social behavior in the swarm. The position and the velocity of the i
th
 particle in 

the dimensional search space can be represented as Xi = [xi,1, xi,2, . . . , xi,d ] and Vi = [vi,1, vi,2, . . . , vi,d 

], respectively. Each particle has its own best position (pbest) Pi = [pi,1, pi,2, . . . , pi,d ] corresponding to 

the personal best objective value obtained so far at time t. The global best particle (gbest) is denoted by 

Pg, which represents the best particle found so far at time t in the entire swarm. The new velocity of 

each particle is calculated as follows: 

                                (20) 

where j = 1, 2, . . . , d; c1 and c2 are acceleration coefficients; w is the inertia factor; and r1 and r2 are 

two independent random numbers uniformly distributed in the range of [0, 1]. Thus, the position of 

each particle is updated in each generation according to the following: 

 

                                                                                         (21) 

 

The optimal control effort is obtained for each window with updated weighting matrix of the 

control effort [R] via the algebraic Riccatti equation. The updated weighting matrix and optimal 

control gains are obtained for each window, independent of the neighboring windows. In other words, 

the solution to the modified optimal control problem does not need to consider the transition 

conditions between two windows. In the proposed method, the total duration of the external excitation 

is subdivided into a number of time windows. For each of these windows, the cost function is 

minimized subject to the constraint given by Equation (9), by updating the weight matrices in real 

time. Figure 5 shows the flowchart of the PSO algorithm and proposed method for determining control 

energy weighting matrices and optimal control force. The fitness or objective function for the PSO 

algorithm for each ground motion is as follows: 
 

                                                                                                (22) 

 

where Xbp and Xbc are the controlled responses of base isolation calculated using WPSOB-LQR, 

and classic LQR, respectively. In addition, Xp and Xc are the controlled responses of base isolation 

calculated using WPSOB-LQR, and classic LQR, respectively. The control energy weighting matrices 

are reduced when the structure has a significant high value of displacement response. This reduction of 

weighting matrices sets off the lesser displacement without penalty. Therefore, the positive aspect of 

the proposed method is that the gain matrices are calculated adaptively by using the time-varying 

weighting matrices depending on the online response characteristics instead of a priori (offline) choice 

of the weights as in the classical case (Amini et al., 2013). 
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Figure 5. (a)  Flowchart of the classical LQR method (b) flowchart of the PSO algorithm (Amini et al. 

,2013) (c) Flowchart of the Wavelet PSO-LQR method. 

NUMERICAL EXAMPLS 

 

In this section, in order to investigate the potential application of the proposed PSO-based modified 

LQR control in smart base isolation, the results of linear dynamic analyses on base-isolated two-

degrees-of-freedom systems excited by a number of near-fault pulse-like earthquake ground motions 

are discussed. The system parameters are shown in table1and Figure 6. 
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                                                                                                    Table 1.System Parameters 

 

                Figure.6. Smart Base Isolation Model 

 

Moreover a MR damper with the capacity of 1000 kN is installed to control the seismic responses of 

the system. Optimal values for the Bouc-Wen phenomenological model parameters for this damper are 

given in Table 2 and the maximum input voltage for this damper is equal to 10 V. The parameter δ 

used for scaling the weighting matrices is determined via PSO algorithm when the central frequency 

of each window band is close to the natural frequency of the MDOF system, whilst for others 

frequencies δ is assumed to be 1. Hence, the weighting matrix component [R], equals to δ [I] for 

resonance frequency bands and is kept as [I] for the rest of the frequency bands. In addition, the matrix 

Q is chosen as identity for each band. Daubechies wavelet of 4
th
 order (db4), is used as a mother 

wavelet to decompose the time history of acceleration for different window bands, to determine the 

frequency distribution of each band. The Daubechies wavelets have reasonably good localization in 

time and frequency to capture the effects of local frequency content in a time signal, and allow for fast 

decomposition by using MRA. The ground motion signals recorded in real time are decomposed for 

each interval window, which is considered as 1 second for updating. The gain matrices are updated for 

each window by solving the Riccatti equation. Therefore, the optimal control forces are calculated.  

MATLAB software has been implemented to compute the response. As a numerical example, the 

response of a structure with a typical (passive) base isolation system is compared with the response of 

a smart base isolation implementing a classical LQR to find optimal control force of the MR damper 

when subject to the Imperial Valley-06 (El Centro Array-06, 1979), Northridge-01 (Sylmar-

Converters Station, 1994), and Kobe, Japan ( Takatori site, 1995) ground motion records. Also, to 

illustrate the potential application of the proposed method, the response of the structure and the base 

isolation system are compared with congenital LQR in Table 3. The time history of the base 

displacement (isolator) response, by using different control methods are shown in Figures 7-9. Figures 

7-9 show that the response of the base isolation system is significantly reduced using WPSOB-LQR 

method with almost same drift of structure. 

Table 2. Parameters for MR damper model. 

 

Parameter                     value  Parameter                     value  

C0a                                                  110.0  KN s m-1  αa                                    46.2   KN  m-1 

C0b                                                 14.3   KN s m-1
  V

-1
  αb                                                     41.2 KN m-1

  V
-1  

K0                                                   0.002   KN  m-1  γ                                    164 m-2 

C1a                                                  8359.2  KN s m
-1  β                                    164 m-2  

C1b                                                 7482.9  KN s m-1
  V

-1  A                                   1107.2 

K1                                                   0.0097  KN  m-1  n                                    2  
X0                                                   0.143   m 

 
 η                                   100 s-1 

Parameter Mass Stiffness Damping 

Base Isolation 10 [ ton] 173.71 [KN/m] 13823 [N s /m] 

First floor 100 [ton] 15791[KN/m] 25133 [N s /m] 
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Figure 7. Acceleration time history of Northridge-01at Sylmar-Converters Station, and time history of base 

displacement using different control methods 

 
 

Figure 8. Acceleration time history of Kobe, Japan at Takarazuka site, and time history of base displacement 

using different control methods 

 

Figure 9. Acceleration time history of Imperial Valley-06 at El Centro Array-06, and time history of base 

displacement using different control methods 
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Table 3. Comparison of Effectiveness of Using Typical Base Isolation, Smart Base Isolation-1 (Using Classical 

LQR Control Algorithm), and Smart Base Isolation-2 (Using WPSOB-LQR Control Algorithm) 

 

 Typical Base  Isolation Smart Base Isolation-1 (LQR) Smart BaseIsolation-2  (WPSO-LQR) 

Earthquake 

Base 

Displacement 

(cm) 

Superstructure 

Drift (cm) 

Base 

Displacement 

(cm) 

Superstructure 

Drift (cm) 

Base 

Displacement 

(cm) 

Superstructure 

Drift (cm) 

Northridge 

Converter Station 

 

72.03 0.73 44.26 1.43 15.7                     2.9 

Imperial Valley 

Array#6 
136.21 1.37 39.27 1.07 22.81                       1.17          

Kobe, Takatori site 59 0.62 46.7 1.75 11.9                       4.43 

 

 

Interestingly, it can be noted that under the Kobe earthquake the base isolation system-1 which 

uses a MR damper that employed conventional LQR algorithm control method does not decrease the 

base response (around 0.5 meter). On the other hand, the proposed method decreases the base 

displacement significantly, while maintaining same level of maximum drift at the first floor 

(representing the extent of the structural damage).  Therefore with the proposed method, an optimal 

response of both the superstructure and of the base isolation systems is achieved under the considered 

ground motion records. 

CONCLUSIONS 

The performance of a smart base isolation system using PSO and DWT methods to find control force 

of MR damper has been investigated. DWT has been used as a powerful time-frequency tool to 

provide time-varying energy in different frequency bands. Also, the optimal active control force has 

been derived using PSO algorithm based on minimization of the gain matrices in LQR controller. This 

method determines the time-varying gain matrices by online updating the weighting matrices, through 

PSO algorithm in each frequency band. Therefore, this method does not need prior information about 

external excitation, thus, eliminating the need for an offline database. The efficacy of this smart base 

isolation system in reducing the base displacement for several near field ground motions has been 

demonstrated. The results are compared with traditional passive base isolation systems and with base 

isolation systems in combination with MR damper employing LQR algorithm to find optimal control 

force. Based on the limited numerical analyses, the proposed method to derive the optimal control 

force appears to perform better than the conventional method in reducing base displacements and can 

be a promising solution for improving the seismic response control of building structures Moreover, 

this method can be efficiently used to reduce the residual displacements of non-re-entering base 

isolation systems.  The results show that this method is practicable and worthwhile for vibration 

control of building structures.  
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