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ABSTRACT 

In the proposed study, a framework for the definition of a safety factor leading to a reliable 

estimate of the mean concrete strength in existing reinforced concrete (RC) buildings is presented. The 

main objective is to provide a methodology capable of establishing a reliable correlation between a given 

level of knowledge that is required (which implies that a number of destructive tests have to be carried 

out) and the confidence in the corresponding mean estimate of the strength that is obtained. The 

development of this approach requires dividing the building into areas with a potentially homogeneous 

concrete strength (e.g. each building storey). Furthermore, the methodology also uses the notion of 

“discrete structure” where the concrete strength of each structural element of a given homogeneous 

building section is assumed to be defined by a single strength value, which can be different than those 

of the remaining structural elements. The reliable value of the mean concrete strength is established by 

a boundary value defined according to an admissible variation with respect to the true mean value and 

includes the effect of uncertainty due to sampling. This admissible variation is defined by a procedure 

that uses both destructive and non-destructive test results. The referred boundary value allows the 

definition of a safety factor which represents the maximum admissible ratio between the true mean value 

and the corresponding reliable estimate. The presented study also proposes an alternative approach 

regarding the definition of the Eurocode 8-Part 3 “knowledge levels” based on the relation between the 

number of structural members that were tested and the total number of structural members. An adaptive 

confidence factor for the mean value of the material strength is then provided for each knowledge level 

as well as an approximation for the admissible global variability of the concrete strength in each 

homogeneous area of the discrete building. The proposed framework can be seen to be a more consistent 

statistically-based alternative to the confidence factor values proposed by Eurocode 8-Part 3. 

INTRODUCTION 

Assessing the seismic performance of existing structures constitutes a matter of high priority in 

earthquake prone areas. As recognized by earthquake engineering experts and public authorities, it is 

important to evaluate the safety of buildings and infrastructures. Therefore, specific code-based methods 

must be developed to address these issues and an adequate calibration of these methods must be carried 

out to analyse their practical use. Several standards (e.g. CEN, 2005; NZSEE, 2006; ASCE, 2003; 

ASCE, 2007; NTC, 2008; ATC, 2009) have been recently developed to address the specifics of the 

seismic safety assessment of existing structures. 

 One particularly important issue that affects the evaluation of the seismic performance of 

existing buildings is related to the definition of their material properties, since the construction quality 
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levels and the original design standards may be very different from those currently in use. Characterizing 

these material properties may be achieved in different ways which may imply different levels of 

knowledge, depending on the level of detail provided by the survey plan and on the availability and 

reliability of information about the design. Therefore, the reliability of the structural properties 

considered in the seismic assessment will depend on the correlation between the confidence and the 

amount of knowledge gathered about the structure. Still, to account for the existing uncertainty, the 

structural properties need to be defined with values on the “safe side”.  

 In the case of reinforced concrete (RC) buildings, code-based methods require that a given 

number of tests must be carried out in the structure to determine the structural properties, namely for the 

concrete compressive strength. According to actual standards, characterizing the concrete strength in 

existing buildings can be achieved by performing destructive tests on a number of material samples 

extracted from the structural members. Due to the destructive nature of this approach and the significant 

costs that are involved (both direct and indirect), standards also suggest the complementary use of non-

destructive tests, such as the rebound hammer test, in order to improve the knowledge and confidence 

provided by the destructive tests. Nevertheless, the sole use of non-destructive methods is not allowed 

by code-based approaches due to the difficulty in obtaining reliable results with non-destructive 

methods. The results of these methods can only be used after defining a reliable correlation between 

destructive and non-destructive test results. 

 The current European standard for the seismic safety assessment of existing buildings is the 

Eurocode 8-Part 3 (EC8-3) (CEN, 2005). This standard defines the minimum number of material 

samples that must be tested according to a general rule, i.e. by defining for each floor and each type of 

member the number of tests that guarantees a certain level of knowledge. EC8-3 establishes three 

knowledge levels (KLs): KL1, KL2 and KL3, which are termed Limited, Comprehensive and Full, 

respectively. For each one of these KLs, EC8-3 assigns a confidence factor (CF) that will act as a safety 

factor to be applied to the mean value of the material properties in order to account for the uncertainty 

induced by the material sampling plan. The values of the CFs proposed by EC8-3 are 1.35, 1.20 and 

1.00 for KL1, KL2 and KL3, respectively. The connection between the KL and the CF value has been 

previously criticized (e.g. see (Elefante, 2010), (Franchin et al., 2010)) due to the lack of objectivity 

behind the CF values. In addition, the role of the factored concrete mean strength value and its possible 

connection with a lower reliable value, often called the characteristic strength, is not clear, thus 

introducing an additional level of uncertainty in the analysis.   

 The Italian code (NTC, 2008) follows a similar strategy to that of EC8-3 by also proposing three 

KLs and the same values for the corresponding CFs. Still, this standard introduces a guidance related to 

what can be regarded as an area with a potentially homogeneous concrete strength. This standard refers 

that the minimum number of material tests must be performed over surface areas which are lower than 

320 m2. 

 The definition of the concrete strength according to ASCE 41-06 (ASCE, 2007) states that if 

the analyst has information about the concrete design strength but no additional construction information 

is provided, a minimum of 3 material samples must be taken from each floor, 306 m3 of concrete or 929 

m² of surface area. In case original design data is not available, the minimum number of material samples 

increases to 6. As in the Italian standard, ASCE 41-06 also introduces a guidance for what can be 

regarded as an area with a potentially homogeneous concrete strength. In addition, this standard also 

specifies that if the coefficient of variation (CoV) of the results is lower than 14%, the mean value of 

the samples may be considered to be a reliable value for the concrete strength, while for larger levels of 

variability the “mean minus one standard deviation” must be assumed as a reliable strength value. The 

reason for the 14% limit on the CoV value can be traced back to the studies of Barttlet and MacGregor 

(Barttlet and MacGregor, 1999) where it was found that a CoV of 13.5% represents the natural 

variability of concrete. 

 For the case of ACI 214.4R (ACI, 2003), the minimum number of material samples NSMA is 

established by ASTM E122 (ASTM, 2000), which is defined according to an admissible difference 

between the sample mean and the true value of the concrete strength (e in %), the expected variability 

of the test results (i.e. the CoV obtained from the samples extracted from a given number of structural 

members, CoV|NSMA) and an acceptable risk of exceeding the previously defined maximum admissible 

difference. When assuming a risk of 5%, the recommended sample size is given by Eq. (1). 
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As can be seen from the review of existing code-based methods for assessing the concrete strength, there 

is no uniform approach and none of the available approaches fully controls the uncertainty in the in-situ 

assessment stages. It becomes clear that a unifying method should include all the aspects previously 

defined, i.e. an indication of the size of the sampling area, an estimate of the material variability in that 

area and an estimate of the statistical uncertainty associated to the level of detail of the survey plan. In 

the present paper, a framework is presented that accounts for all these concepts. It is based in the 

principle of the discrete structure (i.e. each structural member has a single concrete strength) and aims 

to be applied to limited areas of the structure, thus comprising a finite number of structural members, 

hereon designated by NSM. The framework accounts for the variability in the number of non-assessed 

structural members (NSMNA) by defining survey plans (where NSMA members are tested) whose 

statistical uncertainty is represented by the ratio between the surveyed and the real quantities. These 

ratios, hereon called Safety Factors, SF, rely on the finite population defined by each limited area of the 

structure being considered (which, as assumed by Jalayer et al. (2010), can be defined using the 

building’s construction stages, i.e. by floor and storey) whose concrete properties are of interest. The 

following sections detail the main concepts and practical features of the proposed framework. 

Alternative proposals for the EC8-3 KLs and CFs are also presented in light of the proposed framework.  

SAFETY FACTOR FOR THE MEAN CONCRETE STRENGTH BASED ON FINITE 

POPULATION STATISTICS 

Case where the sampling mean is assumed to follow a normal distribution 

 

The proposed approach aims to include the effect of having a finite population of members for the 

material property assessment, thus accounting for the effect of sampling from populations of different 

sizes. This was achieved by considering a confidence interval for the finite population mean, which is 

similar to the common confidence interval for the mean but with the addition of a finite population 

correction factor which reflects the size of the sample. This correction is based on the fact that when 

selecting a sample of size NSMA from a finite population of size NSM, the sample mean approximately 

follows a normal distribution with a mean equal to the true mean   and a standard deviation given by 

Eq. (2), where   is the standard deviation of the population (see, for example, Levy and Stanley (2008) 

for additional details on finite population corrections for different statistics).  
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By considering a finite population of size NSM, an approximate 1-sided confidence interval for the 

mean can be defined by Eq. (3), which assumes that the sample mean obtained from a sample of size 

NSMA |
A

x NSM  follows a normal distribution and where 
1 

z  is the  1   percentage point of the 

standard normal distribution. 
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A safety factor SF can then be defined as the ratio between the true mean  and the sample estimate 

|
A

x NSM  which accounts for the uncertainty of the sample estimate. Introducing SF into Eq. (3) and 

defining CoV
 as 


   one obtains 
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     1 11SF z CoVP           (4) 

 

which states that, for a known (expected) value of CoV
, there is a (1-α) probability that 

1
1SF z CoV

 
    if |

A
x NSM SF  . Therefore, the  1 100%   upper confidence bound on the 

value of SF is: 

 

     
11SF z CoV         (5) 

 

Considering that the true value of CoV
 may not be known and can only be estimated, Eq. (5) can be 

transformed into  
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by assuming that    can be estimated from the sample coefficient of variation for a sample of size 

NSMA, |
A

CoV NSM . 

 

Case where the sampling mean is assumed to follow a lognormal distribution 

 

A similar strategy can be established for the case where the sampling mean is assumed to follow a 

lognormal distribution, a situation particularly relevant when the sample size is smaller. As reported by 

Romão et al. (2012), a confidence interval for the mean θ of a lognormal distribution can be obtained 

considering that Eq. (3) is applicable and can be rearranged to give the (1-α) probability that 

 

     
1| Ax NSM z           (7) 

 

where   and   are the mean and the standard deviation of the associated normal distribution. By 

adding 2
2


  on both sides and taking exponentials of both sides, one obtains 

 

        2 2

1exp 2 ex| p exp 2A zx NSM                 (8) 

 

Knowing that θ is  2

exp 2


   and considering | Ay NSM  to be its sample estimate gives 

 

      1exp| Ay NSM z            (9) 

 

Considering that a safety factor SF can also be defined as the ratio between θ and the sample estimate

| Ay NSM , and using a reasoning similar to that of Eq. (4), a  1 100%   upper confidence bound on 

the value of SF can be obtained from 

 

      2

1exp ln 1SF z CoV          (10) 

 

where  2
ln 1CoV   is  . As for the normal distribution case, the true value of CoV

 may not be 

known. Hence, Eq. (10) can be transformed into Eq. (11) again by involving the finite population 

correction factor and assuming that |
A

CoV NSM  is the sample estimate of the distribution’s coefficient 

of variation. 
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In both the normal and the lognormal cases, the safety factor is defined by the lower bound of the 

confidence interval. Therefore, for a given survey plan (defined by the value of NSMA), the safety factor 

establishes that the estimate of the mean concrete strength must not differ from the true value by more 

than the ratio given by the safety factor. Aside from this, the safety factor also establishes a reliability 

level (i.e. the confidence level) associated to the estimate obtained from the survey and correlates it with 

a level of knowledge (i.e. the relation between NSMA and NSM), thus accounting for the sampling 

uncertainty of those estimates. 

A METHOD TO INCLUDE THE SAMPLING UNCERTAINTY ON THE SAFETY 

FACTOR FOR THE MEAN CONCRETE STRENGTH 

The procedure introduced in the previous section establishes a connection between the number of 

structural members that are assessed during the survey of the material properties and the level of 

confidence that can be assumed regarding the information being gathered. Despite the simplicity of the 

concepts involved in the previously presented equations, some practical considerations may have a 

significant influence in their application. For example, the effect of the potentially larger variability of 

the concrete strength in old buildings can be enhanced when NSMA is small (i.e. when extracting a small 

number of samples from the overall population of size NSM). To illustrate this effect, four datasets (C1-

C4) of concrete core test results from 4 existing buildings constructed in the 1990s were analysed. The 

size of these datasets is between 19 and 27. The mean concrete strength of datasets C1 to C4 is 28, 28, 

30 and 36 MPa, respectively, while the CoV of the concrete strength is 0.29, 0.35, 0.38 and 0.33, 

respectively. In addition, a fifth dataset (C5) was also considered based on the test results of Monteiro 

and Gonçalves (2009). Dataset C5 has 21 test results yielding a mean concrete strength of 20 MPa and 

a CoV of 0.19. Dataset C5 is representative of a building with a concrete strength having a medium 

dispersion, while datasets C1 to C4 represent cases with a larger variability. The 5 selected datasets are 

assumed to represent 5 finite and homogeneous populations. Therefore, for each dataset, the sample size 

corresponds to the value of NSM. Aside from concrete core test results, these 5 datasets also possess 

Schmidt rebound hammer test results (RN) from the structural members that concrete cores were 

extracted from.  

 A comparative study was then carried out to estimate the effect of the sampling uncertainty in 

the estimate of the mean concrete strength for different sample sizes. The study aims to replicate real 

conditions regarding the assessment of concrete strength in an existing building: an analyst must select 

a certain number of candidate structural elements (NSMA) where the material strength will be assessed 

and no information about the remaining NSMNA members (NSMNA=NSM-NSMA) will be available. For 

each dataset, the study defined all the possible combinations of samples with increasing NSMA sizes 

extracted from the NSM data. For each dataset, the lowest NSMA size was 2 and the largest was NSM. 

For each sample, the mean of the sampled NSMA results was calculated, as well as the ratio  χ𝑓𝑐,𝑚
  

between the sample mean and the true mean (i.e. the one obtained considering the entire NSM dataset). 

Hence, for each sample of size NSMA, a dataset of χ𝑓𝑐,𝑚
 values was created. Fig. 1 presents the analysis 

of the χ𝑓𝑐,𝑚
 datasets for increasing values of the ratio between NSMA and NSM, namely in terms of the 

evolution of the mean of χ𝑓𝑐,𝑚
 and of the corresponding CoV.  

 The analysis of the results presented in Fig. 1 shows that, for all samples sizes and for all datasets 

(irrespective of their inherent variability), the mean of χ𝑓𝑐,𝑚
  converges to the true mean value, as seen 

by the horizontal lines of Fig. 1a). On the other hand, as shown in Fig. 1b, the CoV of χ𝑓𝑐,𝑚
  exhibits a 

larger variability which is, in part, influenced by the inherent variability of the datasets. Although the 

variability of χ𝑓𝑐,𝑚
  can be seen to be related to the global variability of the dataset, the CoV values 

shown in Fig. 1b) are, nonetheless, lower than the CoV of the original datasets. As expected, the 

variability of χ𝑓𝑐,𝑚
  decreases as the sample size increases. The rate of this reduction of the variability 
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can be seen to be similar to the evolution of the finite population correction factor that reduces the weight 

of the sampling variability as the value of the relative sample size NSMA/NSM increases. For the dataset 

with the larger CoV, assessing 10% of NSM leads to a CoV of χ𝑓𝑐,𝑚
  around 0.20-0.25, while for dataset 

C5 this CoV decreases to 0.13. 

 

a) b) 

Figure 1. Assessing the sampling uncertainty regarding the mean core strength estimate for increasing values of 

NSMA/NSM: a) mean values of χ𝑓𝑐,𝑚
 and (b) evolution of the corresponding CoV, CoV χ𝑓𝑐,𝑚

. 

 

 In light of the results presented in Fig. 1b, it is possible to analyse how the sampling uncertainty 

about the mean is correlated with the global population variability. It may seem to be incoherent to 

correlate the variability in the central value for a given knowledge level (i.e. a sample size NSMA) with 

the unknown global variability (since only a sample of size NSMA is analysed). Nevertheless, a reliable 

estimate of the global variability is able to be obtained from non-destructive test results, as will be 

presented later in the paper. To explore the potential correlation between the uncertainty in the central 

value and the global variability of the population, two types of data were used during this analysis. Four 

datasets were collected from the study by Chen et al. (2013) to establish a training set and determine the 

correlation. Then, datasets C1 to C5 were used as a testing group to evaluate the performance of the 

correlation that was established. Following the rationale used for the analysis of the mean sampling 

uncertainty, all the combinations of all possible sample sizes were defined for each of the training 

datatasets and, for each sample size NSMA, the CoV of χ𝑓𝑐,𝑚
 , CoV 𝜒𝑓𝑐,𝑚

|NSMA, was computed. The 

value of CoV 𝜒𝑓𝑐,𝑚
|NSMA obained for each sample size and training dataset was then normalized by the 

global CoV of the corresponding dataset to establish the normalized parameter βCoV: 

 

      c,mf A

fc

CoVχ |NSM

CoV |NSM
CoV       (12) 

 

Based on the multiple values obtained for βCoV, a regression model was constructed correlating βCoV with 

the relative sample size NSMA/NSM, hereon represented by factor ϛ. Figure 2a presents the evolution 

of the values obtained for βCoV and the corresponding fitted curve. Several regression models were tested 

but the one represented by Eq. (13) is the one which minimizes the fitting error. The range of 

applicability of Eq. (13) is between 0.05 and 0.95. For values higher than 0.95, βCoV was assumed to be 

equal to one. 
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Figure 2b presents the values obtained for βCoV using the testing data (datasets C1-C5) along with the 

corresponding estimates obtained from Eq. (13). It can be seen that, for these datasets, Eq. (13) defines 

a conservative estimate of the true value of βCoV for most cases. Hence, it can be assumed that Eq. (13) 

provides a reasonable measure of the sampling uncertainty affecting the estimate of the mean. 
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Furthermore, since the mean of χ𝑓𝑐,𝑚
 was seen to be equal to 1.0 for all sample sizes, the variability of 

χ𝑓𝑐,𝑚
  corresponds to the variability of the mean estimate of the concrete strength conditioned on the 

sample size being considered, i.e. CoVχ𝑓𝑐,𝑚
|ϛ = CoV𝑓𝑐,𝑚

|ϛ. The sampling uncertainty associated to the 

estimate of the mean conditioned to the sample size and to the global variability of the population given 

by Eq. (13) indicates that:  

 

   A
CoV fc

A

NSM-NSM1
CoV | β ×CoV |NSM

NSM-1NSMc ,m Af CoV | NSM      (14) 

 

This relation enables Eqs (6) and (11) to now be written as Eqs. (15) and (16), respectively: 

 

      CoV1 fcβ ×CoV |NSM1SF z         (15) 

 

       1

2

CoV fcβ ×CoV |NS 1MSF exp z ln 

 
   

 
  (16) 

 

a) b) 

Figure 2. Empirical correlation between βCoV and ϛ: a) derivation using training datasets and b) comparison 

between the correlation defined and the testing datasets. 

 

 Since 
fcCoV NSM|  is unknown, an approximation based on auxiliary data needs to be defined 

to obtain SF. A reasonable estimate of 
fcCoV NSM| can be established based on results obtained from 

the Schmidt rebound hammer test. This type of non-destructive test presents several practical 

advantages, namely the fact that it causes very little damage to the structure and that it can easily be 

performed over a large number of structural members. Still, a correlation is required in order to transform 

the variability of the rebound test results CoVRN|NSM into the variability of the concrete strength values. 

Pairs of concrete core strength and rebound test values RN obtained from in situ and laboratory tests 

reported in literature studies (Szilágyi, 2013; Fabbrocino et al., 2005; Brognolli, 2007) were selected to 

establish the referred correlation. The validity of this correlation was then tested against the concrete 

core strength values and rebound test results RN pairs of datasets C1 to C5. According to Fig. 3a, the 

data from datasets C1-C5 is within the 75% prediction bounds of the fitted correlation model, a situation 

which is found to be satisfactory and demonstrates the validity of the proposed correlation. 

 Since the proposed correlation was defined using the true value of CoVRN|NSM of a given 

dataset, and since this true value can only defined when all the structural members are tested, an estimate 

of the minimum number of structural members that must be tested in order to obtain a reliable enough 

estimate of CoVRN|NSM was determined. A simulation study was carried out to determine the effect of 

the sampling uncertainty in the estimate of CoVRN|NSM using datasets C1 to C5. For each dataset, all 

the possible combinations of samples with increasing NSMA sizes extracted from the NSM data were 

defined. For each sample of size NSMA, the CoV of the RN values, CoVRN|NSMA, was calculated and 

divided by CoVRN|NSM obtained for the full sample. By analysing the evolution of the mean of these 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

NSM
A

/NSM


C

o
V

 

 


CoV

Fit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

NSM
A

/NSM

R
e
s
id

u
a
l

 

 

Residuals

Zero Line

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8




C

o
V

 

 

C1-C5 datasets

Regression from trainning data



8 

 

ratios, it was seen that a relation NSMA/NSM in the range of 50-60% was enough to have a value of 

CoVRN|NSMA with a 5% margin of error with respect to the true value. 

 

a) b) 

Figure 3. Correlation between 
fcCoV NSM|  and CoVRN | NSM along with the 75% prediction bounds and the 

results of datasets C1-C5 (a); Variation of the absolute number of tests for the assumed KLs (b). 

ALTERNATIVE PROPOSAL FOR THE EC8-3 CONFIDENCE FACTORS 

As previously referred, EC8-3 (CEN, 2005) defines the material safety factor (the so-called Confidence 

Factor, CF) according to 3 different Knowledge Levels (KL) that are associated to absolute values of 

the number material tests that need to be carried out for each building floor and per element type. By 

defining absolute values for the number of tests, EC8-3 has no control over the sampling uncertainty 

that affects the statistical characterization of the material properties. Hence, using the hypothesis of a 

discrete structure with NSM members, Eqs. (15) and (16) can be used to define safety factors connecting 

the ratio NSMA/NSM with a specified level of confidence in the estimate of the mean value of the 

concrete strength.  
 

Alternative definition of the minimum number of tests for each Knowledge Level (KL) 

 

A first step towards the definition of an integrated KL-CF method is to establish minimum sample sizes 

for the knowledge level definition and that correspond to the minimum number of destructive tests that 

have to be carried out. After analysing the evolution of the SFs calculated using Eqs. (15) and (16) for 

different CoV values and NSMA/NSM ratios, a minimum reference ratio was established for each 

knowledge level KL1, KL2 and KL3. These ratios were considered to be 10% for KL1, 20% for KL2 

and 30% for KL3. The 30% limit was established since it is assumed that a higher reliability level needs 

to be obtained while inducing a moderate level of structural damage during the survey. The 20% and 

10% values reflect a reduction of 1-2 destructive tests for different NSMA/NSM ratios from KL3 to KL2 

and from KL2 to KL1. Figure 3b presents the evolution of the minimum number of destructive tests 

according to the reference NSMA/NSM ratios. It can be seen that for KL1, the required number of 

destructive tests remains the same for variations of 10 in the value of NSM. A minimum value of 2 was 

always considered in order to be able to estimate a mean value. For KL2, the assumed NSMA/NSM ratio 

indicates the required number of destructive tests increases each time NSM increases by 5. A similar 

increase is observed for KL3 each time NSM increases by 3. These trends were only analysed up to a 

NSM value of 40 since it was assumed that such limit value of NSM is representative of the maximum 

number of structural members of the same type that may exist in an homogeneous area of 320m2 (the 

limit value suggested in the Italian Code (NTC, 2008)). When only 8 structural members or less are 

present, a minimum of 2 destructive tests is always necessary for KL1 and KL2, and a minimum of 3 

for KL3. Considering an example structure with 20 structural members (i.e. NSM = 20), a minimum of 

2 tests is required for KL1, 4 tests for KL2 and 6 tests for KL3. 
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Definition of Confidence Factors compatible with the proposed Knowledge Levels 

 

Using the proposed definition for the minimum number of destructive tests required for each KL, SFs 

reflecting a specific level of confidence in the estimate of the mean concrete strength can now be 

established using Eqs. (15) and (16). Figure 4 presents the evolution of the SF values as a function of 

increasing values of 
fcCoV NSM|  for different α-levels of confidence and for the 3 KLs previously 

defined in terms of the reference NSMA/NSM ratios. The results based on the normal distribution. Eq. 

(15), are presented in Fig. 4a (KL1), Fig. 4c (KL2) and Fig. 4e (KL3), while those based on the 

lognormal distribution, Eq. (16) are presented in Fig. 4b (KL1), Fig. 4d (KL2) and Fig. 4f (KL3). 

 A global analysis of the results of Fig. 4 indicates that, for each KL for all the considered 

confidence levels, the necessary SFs are slightly larger when using the lognormal distribution. These 

differences and the fact that it represents a more conservative approach, indicates this model is more 

adequate to define the values of SF. After setting this condition, it is necessary to decide which 

confidence level should be assigned to each knowledge level. Little guidance can be found with respect 

to the selection of an adequate confidence level to establish material strength values. Still, some rationale 

seems to exist regarding the bounds for possible values of the confidence level. As stated by Romão et 

al. (2012), a minimum confidence level of 75% is generally considered in the context of structural 

assessment (ACI 228.1R-03, 2003). On the other hand, it is common to find the value of 95% being 

suggested as a maximum value for all practical purposes. Figure 4 presents the evolution of SF for 

various (1-α) confidence levels ranging from 0.75 to 0.95, in steps of 0.05. As can be seen, for all KLs, 

there are significant differences between the SF values obtained for the 95% and 75% confidence levels. 

On the other hand the results obtained for the 85% and the 80% confidence levels are very similar. Also, 

the results obtained for the 85% confidence level are much closer to those obtained for the 95% 

confidence level than to those obtained for the 75% one. Based on the results indicating the evolution 

of SF, an analyst can easily select a  knowledge level to determine the corresponding SF that must be 

used to establish a safe estimate of the mean concrete strength accounting for a desired level of 

confidence and for a known or admissible level of the concrete strength variability.  

 

Comparison of the EC8-3 CF values with the proposed SF values 

 

Since 3 KLs associated with 3 different relative sample sizes were selected in the previous analysis, it 

can be assumed that the length of the confidence interval associated with the corresponding SFs could 

also be established using a similar reasoning. Therefore, instead of selecting the same confidence level 

for all the KLs, one may alternatively define a higher confidence level (i.e. a larger confidence interval) 

for KL1 since there is less information for that KL. For the remaining KLs, lower confidence levels (i.e. 

with smaller confidence intervals) may, therefore, be progressively established. This fact can be 

analysed bearing in mind the reduction of the sampling uncertainty about the mean that is obtained when 

NSMA increases. Hence, if one assumes a maximum confidence level of 95% for the case where NSMA 

is lower (i.e. KL1), the minimum confidence level of 75% can be associated to the case where NSMA is 

larger (KL3). An intermediate confidence level may then be established KL2. Since the reduction in the 

SF is approximately 50% from a confidence level of 90% to a confidence level of 75%, the value of 

90% was assumed for the intermediate level of knowledge (KL2). Figure 5a presents the evolution of 

SF for the confidence levels selected for each KL as a function of increasing values of 
cf

CoV NSM| . 

 The results presented for the 3 KLs and the corresponding confidence levels can be compared 

with the CF values proposed by other standards. As shown before, EC8-3 (CEN, 2005) and the Italian 

code propose a similar approach to define the survey planning operations to assess material properties. 

These standards relate a certain value of NSMA associated to a KL and correct the mean estimate of the 

concrete strength by CF. It must be noted that the CF value proposed by these standards for KL3 (CF = 

1.0) is unrealistic unless the concrete strength is assess in all the structural members. Given the CF 

values these standards propose for KL2 and KL1, 1.20 and 1.35, respectively, a reference value of 1.10 

is proposed for the CF of KL3 to be used in the following analysis. To compare the performance of the 

proposed approach leading to SF values of each knowledge level and of the CF values proposed by EC8-

3 and the Italian standard, Figure 5b replicates the results of Fig. 5a with 3 additional curves representing 

the CF values, termed CF-KL1EC8-3, CF-KL2EC8-3 and CF-KL3EC8-3. 
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a) b) 

c) d)

e)  f) 

Figure 4. Evolution of SF for different KLs and confidence levels: KL1 (normal (a) and lognormal (b) distribution), 

KL2 (normal (c) and lognormal (d) distribution) and KL3 (normal (e) and lognormal (f) distribution) 

 

 By comparing the CF values and the evolution of the proposed SFs, it can be seen that for both 

approaches to be compatible, the admissible variability of the concrete strength (i.e. 
fcCoV NSM| ) 

must be limited. By analysing the range of 
fcCoV NSM| for which CF-KL1EC8-3 and CF-KL2EC8-3 cross 

their corresponding SF curve (CF-KL3EC8-3 was left out since 1.10 is not the true value proposed by the 

standards), it can be seen that 
fcCoV NSM|  should be limited to a value around 0.30. For KL1, a 

fcCoV NSM|  of 0.30 leads to an SF value of 1.34 while, for KL2, an SF value of 1.18 is obtained. For 

KL3, the SF value corresponding to a 
fcCoV NSM|  of 0.30 is 1.07. Therefore, based on this analysis, 

the CF values proposed by EC8-3 and the Italian standard for KL1 and KL2 can only be found to be 

acceptable as long as 
fcCoV NSM|  is lower than 0.30. For the case of KL1, the proposed approach 

based on the definition of SF leads to a more statistically sound proposal since the CF value of 1.0 

proposed by the EC8-3 and the Italian standard is unrealistic. Furthermore, since the CF values will 

yield concrete strength estimates that might be too conservative when 
fcCoV NSM|  is significantly 
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lower than the proposed limit of 0.30, an approach defining a safety factor that varies according to the 

level of strength variability found during the assessment is seen to be more flexible and useful. 

 

a) b) 

Figure 5. Evolution of SF for the selected confidence levels of each KL (a) and comparison of the SF values with 

the CFs proposed by the EC8-3 and the Italian standard. 

CONCLUSIONS 

The proposed paper presents a framework for the quantification of a reliable mean estimate for the 

concrete strength in existing buildings by controlling the sampling uncertainty associated to the survey 

procedures. The proposed framework uses finite population statistics and a discrete idealization of the 

structure of the building. Based on empirical relations representing the reduction of the sampling 

uncertainty about the mean as a function of the relative number of structural members that are assessed, 

safety factors were proposed for the sample mean of the concrete strength conditioned on a given relative 

sample size (i.e. the number of structural members that are assessed with respect to the total number of 

structural members). Safety factor expressions were established for the case where the mean of the 

concrete strength is assumed to follow a normal distribution and for the case where it is assumed to 

follow a lognormal distribution.  

The proposed safety factors depend on the previously referred relative sample size and on the 

global variability of the concrete strength. An empirical method was also proposed to estimate the global 

variability of the concrete strength using results of the Schmidt rebound hammer test. After defining the 

analytical formulation of the proposed safety factor, evolution curves were defined for different 

confidence levels after associating minimum values for the necessary relative sample size associated 

with each knowledge level. These relative sample sizes were 10% for KL1, 20% for KL2 and 30% for 

KL3, with respect to the total number of structural members of a storey or floor under characterization. 

For these KLs, safety factor curves were defined for confidence levels ranging from 0.95 to 0.75. From 

the analysis of these curves, a specific confidence level was to each knowledge level. For KL1, a 95% 

confidence level was considered while for KL3, a 75% confidence level was assumed as the minimum 

value. For KL2, an intermediate level of 90% was considered since it yielded results halfway between 

those obtained from the curves having confidence levels of 75% and 95%. This approach where a single 

confidence level was assigned to each knowledge level was then compared with the CF values proposed 

by EC8-3 and the Italian standard. From this comparison, the CF values proposed by the standards for 

KL1 and KL2 were seen to yield adequate (and conservative) results that are in agreement with those 

that can be obtained using the proposed safety factor approach, as long as the global variability of the 

concrete strength, 
fcCoV NSM| , is lower than 0.30.  

Finally, it is noted that since part of the proposed approach is based on empirical relations, such 

as those defined by Eq. (13) and in Fig 3a, future studies may improve these relations by using additional 

data for the development of the proposed correlations.  
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