
 

1 

 

 

INTERPLAY  OF CONTAINER PORT CRANE S AND QUAY-WALLS 

DURING EARTHQUAKE SHAKING   
 

Rallis KOURKOULIS
1
, Fani GELAGOTI

2
, Marianna LOLI

3
 and George GAZETAS

4 

ABSTRACT 

Despite the great reliance of modern societies on the operability of commercial ports, the latter mainly 

depend on aged quay walls built according to obsolete seismic codes. Moreover, although several 

seismic design guidelines exist for port structures, provisions regarding the seismic performance of 

very sensitive components of container terminals such as cranes are rather limited. Although the latter 

are quite vulnerable to differential displacement of their supports, they are typically designed as rigid 

frames with little or no seismic detailing neglecting their potential interplay with quay-walls during 

earthquake shaking.  In view of the above, this paper presents a parametric study involving nonlinear 

FE numerical analyses of the entire soil-wall-crane interacting system. It is shown that although the 

inertial response of the wall is usually out-of-phase with the crane, the seaward displacement of the 

former may impose kinematically-induced loading on the crane legs producing distortion or even 

derailment. In terms of current quay-wall design practice, it is shown that replacing the crane with two 

constant vertical forces at the locations of its two legs during seismic analysis of port quay-walls is an 

acceptably conservative practice in case of operational-level earthquakes but in case of design-level 

shaking the crane may exert an additional seawards loading on the wall due to redistribution of 

internal shear forces on its sea-side legs.  

 

 

INTRODUCTION  

The latest advances in port and maritime industry have redefined the role of harbor facilities as 

a benchmark for the national economy. Therefore the direct and indirect losses associated with the 

obstruction of the normal function of a port facility are extremely high and may generate major 

regional, national, and even world-wide economic impact. Note that a 2002 10-day  labor lockout at 

west coast ports in the USA cost the countryôs economy an estimated $1 billion daily (Caltrade, 

2008). Experience has shown that port facilities may be particularly susceptible to earthquake related 

hazards. The 1989 Mw6.9 Loma Prieta, California, earthquake caused considerable damage to terminal 

facilities at the Port of Oakland (Werner, 1998; EERI, 1990), the most severe of which was at the 7
th
 

Street Terminal. The inboard crane rail sustained substantial damage as a result of differential 

settlements rendering several of its major cranes immobile after the earthquake. The striking Mw7.2 

Kobe earthquake in 1995 devastated the Industrial Container Terminal of the Port of Kobe (Japan), 

causing tens of cranes along the wharf to collapse. Extensive damage was also experienced by the 
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main port in Port-au-Prince during the 2010 Mw7 Haiti earthquake, inhibiting the delivery of supplies 

due to the toppling of cranes. 

In view of the above, it is clear that in order to enhance the coastal resilience against earthquake 

action, it is of primary interest to realistically estimate the vulnerability of port facilities. This task 

becomes particularly challenging when considering that modern terminals are extended waterfront 

structures which comprise a variety of highly heterogeneous but interdependent components. Yet, 

according to the current state of practice the vulnerability assessment is tackled on an element by 

element basis usually ignoring the potential interplay between the elements at risk. For instance, 

although several seismic design guidelines exist for port structures (e.g ASCE, 2012; Port of Long 

Beach, 2009; DOD 2005; Port of L.A., 2004), provisions regarding the seismic performance of cranes 

is rather limited. Although modern codes require that cranes are not to be damaged by an operating 

level seismic event, and should not collapse under the design level earthquake, no guidelines are 

provided for how to ensure these performance requirements. 

This neglect is warranted by the following three arguments : (i) being very flexible structures 

(their fundamental period is estimated at T=1.5 ï 1.8s) the cranes are expected to be less vulnerable to 

standard seismic shaking (ii) their structural elements are typically overdesigned -to guarantee safe 

heavy lifting-, thus they are not expected to fail due to vibratory motion alone (iii) at a rare case of an 

extreme earthquake shaking they are allowed to uplift (i.e detach from the rail), thus being protected 

from excessive inertia loading.  

On the other hand, cranes are indeed very sensitive components of container terminals, 

characterized by quite strict deformation limitations:  typically designed as rigid frames with little or 

no seismic detailing, and fabricated from thin welded shapes, they are non-redundant structures, and as 

such they are vulnerable to differential displacement of their supports. The latter may be due to 

settlement, sliding or rotation of the quaywall in response to ground shaking even when subjected to 

moderate earthquakes. [e.g. Pitilakis & Moutsakis 1989; Egan et al 1992; Iai et al 1994; Sugano et al 

1999; Dakoulas & Gazetas 2008; Elnashai et al. 2010]. In other words, cranes could become useless 

even if the quay-walls deformations remain acceptable.  

While this is certainly an issue, little attention has been drawn so far on the response of the 

coupled crane on a quay-wall system during seismic shaking. Within this context, this paper attempts 

to assess:  

(a) The effect of the existence of a crane on the seismic response of quay-walls and vice-versa 

(b) The role of ground motion on the response of both systems 

(c) The adequacy of existing analysis techniques in describing the actual soil-wall-crane system. 

To address the above issues, a parametric study has been conducted involving nonlinear FE numerical 

analyses of the entire soil-wall-crane interacting system as explained in the ensuing.  

SEISMIC RESPONSE OF CRANES: NUMERICAL MO DELING AND VALIDATIO N 

Several investigators have studied the earthquake response of cranes either analytically or 

experimentally.  They all agree that, when subjected to strong shaking the landside leg of the crane 

uplifts due to its lower axial load and displaces seaward. Yet the exact characteristics of the rocking 

response are strongly dependent on the particular details of the ground motion. Three distinct phases 

of response are regognised (Fig. 1c):  

During the 1
st
 Phase, the structure sways due to seismic load. This is followed by a 2

nd
 Phase 

during which the landside wheels start sliding due to considerable reduction of their axial load (and 

hence reduced friction on their base. Finally, a 3
rd

 Phase appears once the total weight of the structure 

has practically been assumed by the seaside legs, leading to uplifting of the landside legs. Depending 

on the characteristics of the earthquake, after the 3
rd
 Phase, the leg may either land safely back to their 

original position or derail. 

Crane subjected to monotonic push-over loading 

Prior to proceeding to the soil-wall-crane interaction analyses, the crane model response is validated as 

to its ability to describe these phases when subjected to monotonically imposed push-over loading. 

Following the recommendation of Sugano et. al. (2008) the crane has been modeled as a frame 
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structure combined with a lumped mass on the center of gravity of the original structure (Fig. 1b). 

Mass-less elastic beam elements are used for the modeling of legs, while a rigid beam is used to 

simulate the both the girder and the connecting beam between the girder and the lumped mass.  

The result of the push-over test when the crane is subjected to sea-wards displacement (positive 

displacements indicate sea-wards movement) is presented in Figure 1d, and all three phases of 

response (previously identified) are evident. Observe that during phase 2, sliding does not occur at a 

unique value of acceleration as would be expected for the analogue of a sliding block but it rather 

keeps increasing before uplifting takes place. This is due to the fact that the crane-leg is part of a frame 

structure where re-distribution of internal forces takes place constantly during loading resulting in 

varying shear and axial force (i.e. friction) at its base. It is also worth noting that, due to the crane 

geometry, the response is strongly asymmetric and therefore sliding and uplifting may also occur 

when loading in the opposite direction (landwards), yet at significantly greater accelerations. 
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Figure 1. (a) A typical crane structure (b) Numerical modeling of the crane using beam elements and lumped 

mass (c) The three phases of response of a crane subjected to monotonically increasing lateral loading (d) The 

dimensionless horizontal force vs horizontal displacement curve produced when subjecting the numerical model 

of the crane to lateral push-over loading 
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MODEL DESCRIPTION AND CONSTITUTIVE  MODELING  

Problem Geometry and Soil Properties 

The general dimensions and soil conditions of the problem to be analyzed have been inspired by an 

existing container port-facility in an earthquake-prone area of southern Europe. The configuration of 

the fully coupled model is portrayed in Figure 2a while the soil profile is described in Table 1. A 

symmetrical model has been constructed in order to simultaneously examine the effect of wall 

orientation with respect to the record (i.e. record polarity). Two complementary models are also 

analyzed ( Fig 2b,c). These are: (i) a level ground model, where the dynamic response of the crane is 

examined independently from the quaywall response and (ii) a plain quay-wall model in which the 

crane has been replaced by 2 point loads (one at each crane leg); this type of analysis is adopted by 

conventional seismic analysis of quay-walls.   

 

Analysis Methodology and Numerical Modeling  

The problem is analyzed utilizing the ABAQUS finite element (FE) algorithm under plane-strain 

conditions, with due consideration to material (soil and superstructure) and geometric (sliding, 

uplifting) nonlinearities. Soil and crane footings are modeled with quadrilateral continuum elements, 

while elastic beam elements were used for the crane. To allow for detachment and sliding at the 

foundation-soil interface, appropriate interface elements (with constant ɛ equal to 0.7) have been 

utilized. The lateral boundaries of the model are free to move horizontally so as to realistically 

reproduce the free-field kinematic soil response. Ground shaking is in all cases imposed at the bottom 

of the models while properly calculated dashpot elements are ensuring the elimination of reflections 

on the base.   

(a) 

(b) 

Constant 
V load [kN/m] 

l1+l 2 

(c) 

Fully coupled FE analysis 

Level ground FE analysis Conventional Approach 

 

Figure 2. Plane Strain Finite element models. (a) The fully coupled soil-wall-crane model (b) A crane on level-

ground model (c) Soil-wall model where the crane has been replaced by two vertical forces at the location of its 

two rails. 

 

Soil elements obey to a simple elasto-plastic constitutive model with Mohr-Coulomb failure 

criterion. In order to effectively account for stiffness degradation due to straining, 1-D equivalent 

linear analyses have been initially performed providing the appropriate secant stiffness moduli to be 

used in the subsequent 2-D analyses. The actual soil behavior in coastal areas such as port will 

undeniably be affected by negative or positive pore pressures generation. The extremely complex 
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effect of dynamic pore pressures on the response of the quay-wall has been highlighted by several 

researchers. Among them, Dakoulas and Gazetas (2008) have shown that during shaking both positive 

and negative excess pore water pressures may develop behind the wall depending on its oscillatory 

motion; these excess (dynamic) pressure increments may result in zero, or even negative, net pore 

water pressures. However, at this stage focus is on the identification of the mechanisms governing the 

wall-crane interaction under seismic loading ïa quite complex phenomenon in itself. Hence, in order 

to reduce complexity, soil has at this stage been assumed to be dry acknowledging that consideration 

of pore-pressures would alter the actual stresses acting on the wall but not the crane-wall interaction 

mechanism. 

 
Table 1. The assumed soil profile 

Depth : m Description VS : m/s Eo : MPa 
Strenth parameters 

[ű: degrees, c : kPa] 

0- 15 Backfill 150-200 120-220 [32
o
, 0] 

15-25 Foundation layer 250 350 [35
o
, 2] 

25-35 Lower stratum 250-300 350-500 [35
o
, 5] 
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Figure 3. The Imperial Valley record used as excitation motion (left). The dynamic acceleration-displacement 

loop produced at the craneôs center of mass when subjected to the Imperial Valley record (right). 

     

SEISMIC RESPONSE OF THE CONTAINER CRANE:  EFFECT OF QUAY-WALL  

 

The seismic response of the crane is first evaluated by subjecting the model (of the crane on a level 

ground) to a moderately strong design-level earthquake, i.e. the Imperial Valley time history (recorded 

during the Mw=6.4 earthquake of 1979)  whose PGA is equal to 0.36g (Fig. 3a). The crane response is 

presented in terms of acceleration-displacement plot (Fig. 3b) compatible with the previously shown 

monotonic-response curve. As evidenced by the plot, the shaking is sustained by the structure with no 

uplifting but rather some limited sliding, as the produced curve slightly enters the sliding-dominated 

region of the monotonic curve.  

The effect of the wall on the craneôs response is demonstrated in Figure 4, which refers to the 

most detrimental case, i.e. the response of the left crane. As expected, the wall keeps accumulating 

outward displacement during shaking (Fig. 4a); observe that at around t =6.3 s, the wall experiences a 

quite instantaneous displacement reflected in the form of a spike on the plot which apparently is 

provoked by the main pulse of the time history (recall Fig. 3a). At this very instant, the axial force on 

the left (land-side) leg of the crane is taking an instantaneous minimum (due to flexural oscillation); 

this results in reduced shear resistance on the leg base which is subsequently rapidly ñdraggedò 

rightwards (Fig. 4b) as a consequence of the wallôs displacement. The mechanism is demonstrated in 

Fig. 4c). Observe that although the crane oscillation continues well after that instant, the experienced 

displacement at the left foot is not recovered. It is worth noting that in the opposite crane (right part of 

the model) the pulse actually ñpushesò the wall inwards thereby being practically beneficial for the 

response of the crane too.  

The structural distress of the crane is evaluated in terms of acceleration and drift time-histories 

depicted in Fig. 5, which compares the response when founded on the quay-wall with that when lying 
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on level ground. Interestingly, the experienced acceleration on the center of mass of the crane is 

curtailed between 6 and 7s with respect to the level ground conditions due to the kinematically 

imposed sliding identified previously. This means that sliding takes places before the crane 

experiencing the sliding acceleration of 0.23g discussed previously. Indeed, sliding does occur in level 

ground conditions too (Fig. 5b) but, the ñdraggingô-induced displacement results in an additional 13cm 

of outwards displacement rising the total ȹx value to 23cm which corresponds to derailment of the 

crane.  
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Figure 4. (a) Time history of the produced displacement of the wall when the model is subjected to the Imperial 

Valley shaking. Positive Values reflect seaward displacement (b) Time history of the differential horizontal 

displacement between the two legs 
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Figure 5. Comparison between the response of crane on level ground (dashed black line) and crane on wall (grey 

line) (a) Crane acceleration at its center of mass (b) Differential horizontal displacement between its two legs 

(c,d) Drift time history of the Land-side and Sea-side legs respectively. 

 

As to the comparison of drift (defined as the difference of horizontal displacement at the top and 

bottom node of the crane leg) time histories, it is evident that, in level-ground conditions the two legs 

behave quite similarly (Figs. 5c and d) with their differences being attributable to their non-symmetric 
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loading (as the mass does not lie on the middle of the horizontal beam). On the other hand, when 

founded on the wall, the sea-side leg tends to oscillate as it would on level ground but, at the instant of 

the impulse loading, it is forced to follow the wall motion; thus the curve is shifted towards the 

negative y-axis and keeps oscillating around a different mean value. Finally, when examining the land-

side leg, as seen previously the wall displacement drags it to a new position thus imposing it to a 

permanent drift (due to its non-recoverable dislocation).  

SEISMIC RESPONSE OF QUAY-WALL: EFFECT OF THE CRANE 

This final section attempts to address the adequacy of current seismic wall design provisions by 

shedding light on the modification of the response of the quay-wall due to its interaction with the 

crane. Current state of practice in seismic analysis of port quay-walls treats the crane as two 

concentrated forces at the locations of the two legs. The response of the quay wall is evaluated in 

terms of its horizontal displacement by comparing the time histories produced for each of the two 

design considerations i.e. 

(a) Seismic analysis of the soil- wall model subjected to the excitation time history at its base 

under the action of two constant  horizontal forces at the locations of the crane legs 

(b) Seismic analysis of the whole soil-wall-crane model. 

Results are plotted for both the left and right-side wall in order to simultaneously investigate the effect 

of wall orientation (or record polarity).  

In Fig. 6 the wall response is investigated when the models are subjected to the moderately 

strong design-level earthquake (i.e the Imperial Valley record), while Fig. 7 shows results for the case 

when the models are subjected to low-amplitude scenarios (i.e. of recurrence period T=100 years). The 

excitations corresponding to the latter scenario have originated from the Sepolia time-history 

(recorded during the M=5.9 Athens 1999 earthquake) and the Treasure island time history (recorded 

during the Loma Prieta Mw=6.9 earthquake in 1989). Both have been amplitude scaled but the rest of 

their distinct characteristics (i.e. frequency, duration, number of strong motion cycles) have been 

retained. 
 

Response to design-level earthquake 

As evidenced by the plots of Figure 6, (in terms of maximum displacements) current design constitutes 

a conservative consideration when referring to the left wall while the opposite happens for the right 

one. Indeed, due to its orientation, the left wall is experiencing seawards displacement when subjected 

to the main pulse of the record; hence the simultaneous action of a constant load on its body tends to 

further destabilize it thereby leading to its increased displacement at that instant. Consideration of the 

wall-crane interaction has in this case a quite beneficial effect. Due to the redistribution of internal 

forces on the crane legs during its out-of-phase oscillation the shear force transmitted to the wall at the 

instant of impulse loading (by the earthquake) acts inwards thus limiting the wall rotation and 

displacement. As expected, the effect is the opposite on the right wall: now the shear force direction is 

seawards which subsequently increases the wall displacement rendering the conventional design 

approach (i.e. constant force) un-conservative. Observe however that because the record polarity does 

not generally generate significant displacement in the right wall, the effect of the wall-crane 

interaction is not critical.  

Finally, it is worth noting that both walls keep accumulating displacements after the end of ground 

shaking as a result of the free-oscillation of the cranes. This effect is obviously not reproducible by the 

conventional design approach.   

 

Response to low-amplitude earthquake shaking 

Results are presented in Figure 7 plotting the wall displacements calculated by means of each of the 

two design considerations. The excitation time histories are plotted in top of Fig. 7; both are 

characterized by low PGA values (of the order of 0.1g) with the first one (Sepolia time-history) 

corresponding to a high-frequency and the second one (modified Treasure island) representing a low-

frequency scenario. Evidently, in the former scenario, the wall response is quite accurately captured 

when adopting the existing design approach (i.e. consideration of concentrated forces). Indeed, in this 
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case the oscillation of the crane is definitely out-of-phase with the ground motion and as such 

produces no effect on the wall response.  The picture is not the same however when referring to the 

long-period shaking which is apparently more perceptible by the crane; this, in turn, results in the 

latter imposing loading on the wall thus leading to accumulation of displacement with cycles 

ultimately reflecting an under-prediction of the actual wall distortion by the conventional design 

approach. Although the intensity of shaking is not high and such under-prediction is not critical, it is 

worth highlighting the need of a more realistic consideration of the crane effect in seismic design of 

port facilities.  

Indicatively, Figure 7b portrays the effect of the wall-crane interaction on the actual response of 

the crane when subjected to the low-amplitude scenarios. A similar result as previously is extracted: as 

long as the shaking is not rich in long-period pulses, the wall will not modify the crane response with 

respect to the level ground conditions. Yet, accumulation of wall outward movement (i.e. in the case 

of the long-period modified Treasure Island record) would not let the crane unaffected but rather 

create a biased drift pattern: the sea-side leg follows the wall movement gradually building up 

unilateral drift as reflected on the slight shift on the drift time-history of Fig. 7b.  
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Figure 6. Effect of the Crane on the response of the quay wall. The produced wall-displacement time histories 

are calculated using either the fully coupled soil-wall-crane model (dashed blue line) or the conventional design 

approach where the crane is replaced by two constant vertical forces. 

CONCLUSIONS 

A study has been presented on the seismic response of a container terminal including a soil-quay-wall-

crane interacting system. Non-linear dynamic finite element analyses have been performed subjecting 

the systems to several earthquake scenarios. It was shown that: 

Á The rocking response of cranes is not always granted. In fact, although the inertial response of the 

wall is usually out-of-phase with the crane, the seaward displacement of the former may impose 

kinematically-induced loading on the crane legs producing distortion or even derailment. 

Á Such derailment may occur well before uplifting would take place if the crane was founded on a 

level ground 

Á Replacing the crane with two constant vertical forces at the locations of its two legs during seismic 

analysis of port quay-walls is an acceptably conservative practice in case of operational-level 

earthquakes 

Á In case of design-level shaking, depending on the characteristics of ground motion, the crane may 

exert an additional seawards loading on the wall due to redistribution of internal shear forces on its 
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sea-side legs. These may further destabilize the wall producing larger deformation than expected 

according to the conventional design approach.  

Á Similar effects may be observed in case of long-period ground shaking (even at low amplitude) 

which significantly affects the swaying motion of the crane. 
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Figure 7.  Comparison between the prediction of the conventional design approach and the fully coupled analysis 

in terms of wall displacement and crane distortion expressed in terms of drift (horizontal displacement at the top 

of the leg minus that at its bottom); in all cases the models are subjected to moderate seismic scenarios (Modified 

Sepolia and Treasure Island records) of PGA<0.1g. 
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