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ABSTRACT 

Review of earthquake damage to reinforced concrete (RC) walled buildings and damage sustained by 
slender RC walls subjected to cyclic lateral loading in the laboratory suggests these components 
commonly exhibit compression-controlled flexural failure. In the laboratory, compression-controlled 
failure of walls typically results in rapid strength loss; in the field, compression-controlled failure 
could be expected to result in undesirable building performance and unacceptable collapse risk. To 
investigate the earthquake performance of walled buildings, a numerical model was developed to 
enable accurate simulation of compression-controlled flexural failure. The earthquake performance of 
a series of idealized ACI Code-compliant walled buildings ranging in height from six to thirty stories 
was assessed. The results of this work indicate the potential for shear-controlled failure in walled 
buildings designed using ASCE 7 (2010) procedures. The results of numerical simulation were used to 
develop 1) capacity-design procedures for shear, 2) recommendations for flexural demands for use in 
design to ensure that inelastic flexural response is isolated to well-defined locations, and 3) strength-
reduction factors to achieve desired collapse risk.    

EARTHQUAKE RESPONSE OF SLENDER CONCRETE WALLS 

A review of earthquake damage to concrete walled buildings and of damage to slender concrete walls 
subjected to cyclic lateral loading in the laboratory indicates the potential for compression-controlled 
flexural failure, characterized by crushing of concrete and buckling of longitudinal reinforcement in 
the compression regions of the wall. In the laboratory, concrete crushing and reinforcement buckling 
typically occurs simultaneously and is followed by rapid strength loss. Figure 1 shows compression 
damage, characterized by concrete crushing and buckling of longitudinal reinforcement, to walls in 
modern buildings with poorly (Figure 1a and 1b) and well confined (Figure 1c) boundary elements 
following the recent 2010 Chile and 2011 Christchurch earthquakes. A review of earthquake damage 
to walled buildings around the world suggests that the damage patterns shown in Figure 1 are not 
unique. Figure 2 by Birely (2012) shows the percentage of walled buildings exhibiting various damage 
modes as determined from review of post-earthquake reconnaissance reports; compression-damage is 
the most commonly observed damage mode. Finally, the data in Figure 3 show that the potential for 
compression-controlled failure is observed also in the laboratory, with almost 50% of wall specimens 
of varying configurations (planar, barbell, T-shaped, and C-shaped) tested in the laboratory under 
cyclic lateral loading exhibiting compression-controlled failure. 
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a) Wall with compression damage, 17-story, mixed-use 

building constructed in 2009, Chile (Moehle 2012).

c) Wall with compression damage, 7-story 
commercial building, Christchurch, NZ (Kam et al. 
2011). 

b) Wall with compression and shear damage, 12-story 
residential building constructed in 2006, Chile (Moehle 
2012). 

Figure 1. Compression damage to modern concrete walled buildings following recent earthquakes. 
 

 
Figure 2. Damage observed in concrete walled buildings following major earthquakes since 1957 (Birely 2012).  

 
 



  
 

  

  
a) Modern slender wall test specimen (PW4) at the 
end of laboratory testing; compression failure of right 
boundary element resulted in loss of lateral strength  

b) Compression damage in boundary element of slender 
wall test specimen PW4 shown in a). 

 
c) Percentage of wall test specimens exhibiting different 

failure modes in the laboratory. 

Figure 3. Damage observed in slender concrete wall tests specimens in the laboratory (Birely 2012).  

SIMULATION OF WALL RESPOSNE 

To investigate the earthquake performance of mid- to high-rise concrete walled buildings, accurate 
simulation of concrete walls, including accurate simulation of strength loss, is required. A wide range 
of models have been used to simulate the behavior of concrete walls exhibiting flexural response. 
These include multi-spring-element models, beam-column elements with lumped plasticity and 
distributed plasticity, and continuum models comprising shell elements and solid elements. Pugh 
(2012) reviewed nonlinear response models used currently in research and compared simulated and 
observed response histories for three commonly employed numerical models: the distributed-plasticity 
force-based and displacement-based fiber-type beam-column elements implemented in OpenSees 
(http://opensees.berkeley.edu) and the plane-stress RC continuum model implemented in VecTor2 
(Wong and Vecchio 2006). Pugh concluded that i) no existing model provides accurate, mesh-
objective, computationally efficient simulation of wall response through failure and ii) the distributed-
plasticity force-based fiber-type beam-column element implemented in OpenSees provides the greatest 
opportunity for development to achieve accurate modeling (Pugh 2012).  

To advance simulation of concrete walls, Pugh (2012) built on work by Coleman and Spacone 
(2001) addressing simulation of RC components using distributed-plasticity fiber-type beam-column 
elements. Coleman and Spacone demonstrate that for flexural RC components that exhibit softening 
due to concrete crushing, simulated drift capacity exhibits mesh sensitivity due to localization of 
deformation at the controlling section, and they propose regularization of the concrete constitutive 
model to achieve mesh-objective results. Regularization entails defining a unique concrete stress-strain 
curve for each fiber section in the beam-column element, with the post-peak portion of the concrete 
stress-strain curve defined by the integration length associated with the section and the concrete 
crushing energy, which is assumed to be a material property. Figure 4a shows a regularized concrete 
stress-strain model in which LIP is the length associated with the section and Gfc is the concrete 
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crushing energy. Coleman and Spacone recommend values for the crushing energy of unconfined and 
confined concrete and demonstrate mesh-objective simulation of response for a reinforced column 
tested in the laboratory by Tanaka and Park (1990). Pugh (2012) demonstrates that achieving accurate, 
mesh-objective simulation of drift capacity for a set of 11 flexural walls exhibiting softening requires 
regularization of concrete and steel material models. Regularization of the stress-strain curve for 
reinforcing steel entails defining a unique steel stress-strain curve for each fiber section in the beam-
column element, with the post-yield portion of the curve in tension and compression defined by the 
integration length associated with the section and the steel post-yield energy, which is assumed to be a 
function of the gage length used in material testing. Figure 4b shows the definition of the steel post-
yield energy (Gfs) as a function of material test data (fy, fu, y, u,exp) and the gage length used in 
material testing (Lgage); Figure 4c shows the regularized steel response model in which the regularized 
post-yield tangent stiffness (b''Es) and regularized strain at ultimate strength (u'') are functions of the 
steel post-yield energy (Gfs) and the integration length associated with the section (LIP). 
 

  
(a) Regularized concrete model (b) Measured steel response  (c) Regularized steel model  

Figure 4. Stress-strain response histories employed in regularization of material response. 
 
Using experimental data for 11 planar flexural wall test specimens that exhibited softening due 

concrete crushing and steel buckling under cyclic loading, Pugh (2012) developed recommendations 
for defining the crushing energy of unconfined concrete (ܩ௙௖) and confined concrete (ܩ௙௖௖) as a 
function of concrete compressive strength:  

௙௖ܩ ൌ 2 ௖݂	
ᇱ  N/mm (1) 

௙௖௖ܩ ൌ  ௙௖ (2)ܩ1.70

where ௖݂	
ᇱ  is the concrete compressive strength in MPa. These recommendations are appropriate for use 

with the force-based element formulation; the variation in axial load at the section level that is 
simulated using the displacement-based element formulation results in different crushing energy 
values being required for use with the displacement-based element. Unconfined concrete crushing 
energy (ܩ௙௖), was calibrated to provide, on average, accurate simulation of response for two planar 
walls constructed of unconfined concrete. Confined concrete crushing energy (ܩ௙௖௖) was defined to 
provide, on average, accurate simulation of response for nine walls constructed of unconfined and 
confined concrete. Figure 5 shows the ratio of simulated to observed drift capacity as a function of the 
ratio of the confined to unconfined concrete crushing energy for the nine walls used to develop Eq. 2. 
The data in Figure 5 suggest that crushing energy is largest for walls with well-confined boundary 
elements and smallest for walls with poorly confined, rectangular boundary elements. The relationship 
between confinement and confined concrete crushing energy suggested by the data in Figure 5 was not 
included in Eq. 2 due to the small number of data points (Pugh 2012).  
 The regularized model was validated through comparison of simulated and observed response 
for a series of planar wall tests. Tests specimens were modeled using meshes comprising three force-
based beam-column elements with three, five or seven integration points (i.e. fiber-type section 
models) along the length of the element. Three force-based elements were used because some 
specimens represented three-story subassemblages with loads applied at floor levels. Figure 6 shows a 
model with five integration points. A one-dimensional fiber-type discretization of the wall section was 
employed with an approximately constant fiber thickness of 1/32 of the depth of the confined 
boundary element; this level of mesh refinement was required to achieve accurate simulation of cyclic 



  
 

  

response (Pugh 2012). Concrete 
material response was simulated using 
the OpenSees Concrete02 material 
model. Using this model, i) pre-peak 
response in compression is defined by 
the Hognestad model (1951), ii) post-
peak response in compression is linear 
to a user-defined residual compressive 
strength, iii) tensile response is bilinear 
to a residual tensile strength of zero, iv) 
the unloading path from the 
compression envelope is bilinear and 
from the tension envelope is linear, v) 
reloading paths are linear, and vi) 
reloading in tension and compression 
occurs immediately upon unloading to a 
state of zero stress. Post-peak concrete 
response was defined using regularized 
material response parameters (Figure 
4a); additional model parameters were 
defined as follows: i) for unconfined 
concrete, measured concrete 
compressive strength was used, ii) 
confined concrete strength was 
determined using the recommendations 
of Saatcioglu and Razi (1992), iii) given 
the Hognestad assumption of a 
parabolic pre-peak response curve, 
concrete strain at peak strength was 
defined such that the concrete modulus 
at zero strain was equal to that defined 
by ACI 318 (2011), iv) residual compression strength was 20% of maximum strength, v) concrete 
tensile strength was defined equal a lower bound of 0.33ඥ ௖݂

ᇱ MPa ൫4ඥ ௖݂
ᇱ݅ݏ݌൯ per Wong and Vecchio 

(2006) and vi) concrete post-peak stiffness in tension was defined equal to 0.05Ec per Yassin (1994). 
Steel material response was simulated using the OpenSees Steel02 model; this model employs a 
bilinear envelope with unload-reload paths defined using Mengetto-Pinto (1973) curves. Post-yield 
tangent stiffness was defined using regularized material response parameters; additional model 
parameters were defined using measured yield and ultimate strengths and measured strain at ultimate 
strength. The OpenSees MinMax material wrapper was used to simulate steel strength loss in tension 
at the regularized steel strain at ultimate strength (u'') and in compression at the regularized confined 
concrete strain at 80% strength loss (20u in Figure 1a). Simulation of steel compression failure was 
intended to represent steel strength loss due to steel buckling at the compressive strain at which 
confinement from concrete was lost due to concrete compressive failure. Shear flexibility was 
included in the model, with elastic shear stiffness defined equal to 10% of the gross section stiffness 
per Lowes et al. (2009). 
 A data set comprising 18 planar wall test specimens was assembled for the model validation 
study; Pugh (2012) provides details for the test specimens. Specimens exhibited flexural response with 
failure resulting from simultaneous concrete crushing and steel buckling (CB), steel fracture following 
buckling (BR), or steel fracture prior to buckling (R). Table 1 presents statistics for the ratio of 
simulated to observed stiffness, strength and drift capacity for specimens grouped according to failure 
mode and for entire data set. Note that yield stiffness was defined using the displacement at the 
strength corresponding to simulated first yield of longitudinal reinforcement and that drift capacity 
was defined as the displacement at 20% strength loss. Figure 7 presents simulated and observed 
response histories for a typical specimen where response is simulated using the basic, unregularized 

Figure 5. Ratio of simulated to observed drift capacity versus the 
ratio of confined to unconfined concrete crushing energy. 

Figure 6. Planar wall test specimen subjected to lateral loading 
only at the top of the specimen and force-based element model.

௙௖௖ܩ ⁄௙௖ܩ  
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model (Figure 7a) and the regularized model (Figure 7b). Results of the validation study support the 
following conclusions: 

 
1. Peak base shear strength of all walls was accurately simulated by all force-based element meshes 

considered. The mean simulated to observed peak strength ratio was 0.94 with a coefficient of 
variation of 0.04 for compression controlled wall specimens and 0.99 with a coefficient of 
variation of 0.06 for tension controlled specimens. 

2. Secant stiffness to yield was accurately simulated by all force-based element meshes considered. 
For all walls, the mean simulated to observed yield stiffness ratio was 1.02 with a coefficient of 
variation of 0.09.  

3. Drift capacity data for walls failing due to flexural compression (CB) show a small dependency on 
the number of integration points. However, this is a vast improvement over the unregularized 
model which was found to have an average ratio of simulated to observed drift capacity ranging 
from 2.31 to 1.24 for models comprising a single force-based element with 3 and 7 integration 
points, respectively.  

4. For the two (2) specimens failing due to tension rupture prior to significant buckling (R), drift 
capacity was slightly overestimated by the model, with a mean simulated to observed drift 
capacity ratio of 1.11 for the five fiber-section model.  

5. For the five (5) specimens failing due to tension rupture after significant buckling (BR) and 
identified as softening systems, drift capacity was again slightly overestimated (ratios of simulated 
to observed drift capacity ranged from 1.06 to 1.11 for models with three, five and seven 
integration points), the coefficient of variation for these ratios was relatively high (ratios ranged 
from 0.29 to 0.22), and some mesh dependency was observed. The overestimation of and variation 
in simulated  drift capacity likely results from the simplicity with which strength deterioration due 
to buckling of reinforcing steel was simulated; however, these results are likely acceptable for 
most applications.    

Table 1:  Ratio of simulated to observed response quantity for regularized wall model. 

Failure 
Mode 

No. of 
Tests 

 
Yield Stiffness Ratio Strength Ratio Drift Capacity Ratio 

3 IP 5 IP 7 IP 3 IP 5 IP 7 IP 3 IP 5 IP 7 IP 

CB 11 
Mean 1.01 1.02 1.02 0.95 0.94 0.94 0.96 0.97 1.02 
COV 0.09 0.09 0.10 0.04 0.04 0.04 0.14 0.14 0.17 

BR 5 
Mean 1.01 1.01 1.01 0.96 0.95 0.95 1.06 1.08 1.11 
COV 0.11 0.11 0.11 0.06 0.05 0.05 0.29 0.22 0.23 

R 2 Mean 1.05 1.04 1.04 0.99 1.00 0.99 1.04 1.11 1.18 

All 19 
Mean 1.02 1.02 1.02 0.96 0.95 0.95 1.00 1.02 1.06 
COV 0.09 0.09 0.09 0.05 0.04 0.04 0.19 0.17 0.19 

 

  
 (a) Standard, unregularized material models   (b) Regularized material models  

Figure 7. Simulated and measured normalized base shear versus drift response for planar wall WSH6 tested by 
Dazio et al. (2009). Note that base shear is presented in US customary units. 



  
 

  

PERFORMANCE OF US CODE-COMPLIANT CONCRETE WALLED BUILDINGS 

To improve understanding of the earthquake performance of US code-compliant concrete walled 
buildings, idealized buildings were designed and assessed using the regularized beam-column model 
presented above and the FEMA P695 (2009) methodology. Four core-wall buildings with a 100 ft. by 
100 ft. footprint and ranging in height from 16 to 20 stories were designed using current codes and 
standard practice. For each building height, designs were completed for demands determined using the 
ASCE 7 equivalent lateral force (ELF) procedure and using the results of model response spectrum 
analysis (MRSA); MRSA demands were scaled such that the base shear demand was equal to that 
determined using the ELF procedure. Details of the design process included the following: i) the core-
wall system was assumed to be located at the center of the building and comprise two coupled c-shape 
walls, ii) assumed seismic weight of 170 psf, gravity weight of 190 psi and wall axial load at the base 
of 0.1fcAg, iii) earthquake base shear demands determined per ASCE 7 (2010) for seismic design 
category D with R = 6 and Cd = 5, iv) walls were sized for shear per Seismic Design of Cast-in-Place 
Concrete Special Structural Walls and Coupling Beams (NIST 2011), v) wall longitudinal 
reinforcement layout was uniformly distributed over the cross section of the wall, designed to meet 
strength requirements at the base of the wall, and continued up the entire height of the wall, and vi) 
wall capacities and detailing were determined using ACI 318-11. OpenSees models of the idealized 
walled buildings were created that included i) regularized beam-column elements with elastic shear 
stiffness used to model the wall, ii) seismic mass uniformly distributed to wall nodes, iii) gravity load 
uniformly distributed over the height of the building, with a portion of the load applied to wall nodes 
to generate the desired axial load at the base of the wall, iv) the remaining gravity load was uniformly 
distributed over the height of the building and applied to a p-delta column that contributed no lateral 
stiffness, and v) 2% Rayleigh damping was assumed. Incremental time-history analyses (ITHAs) were 
performed for each of the ground motion records included in the P695 far-field ground motion set, 
with ground motions scaled on the basis of the spectral acceleration at the design period of the 
building (T1), which was the ASCE 7 upper limit of CuTa. Earthquake ground motion was assumed to 
act only in the direction of wall webs; response in the direction perpendicular to the web of the walls, 
which would induce coupling of the walls due to the presence of coupling beams, was not considered.    

The analysis results indicate that all building designs could be expected to exhibit shear failure 
at earthquake intensities far below the design basis event (DBE). Specifically, the data show that 
median maximum shear demand exceeded the probable 
shear capacity (determined per ACI 318 using expected 
material strengths rather than design strengths) for 
earthquake intensities exceeding approximately 30% of 
the maximum considered earthquake (MCE). Note that the 
intensity of the DBE is 67% of the MCE. Figure 8 shows, 
for the 20-story building, the ratio of the median of the 
maximum simulated shear demands (VITHA) computed for 
each of the ground motions included in the P695 far-field 
ground-motion suite to the shear capacity computed using 
expected rather than design material strengths (Vn,pr) 
versus the median earthquake intensity of the ground 
motion suite relative to the intensity of the MCE. Data for 
other building heights were similar to those in Figure 8. 

SEISMIC DESIGN OF SLENDER WALLS: SHEAR DEMAND 

To reduce the likelihood of shear failure in slender walls, a new capacity-design approach for shear 
was developed. Development of the new approach started with an evaluation of shear demand in 
slender wall buildings and an evaluation of existing capacity-design procedures for shear. To 
accomplish these evaluations, a second set of concrete walled buildings was designed. Sixty-four (64) 
idealized walled buildings ranging in height from 6 to 24 stories were designed using the design 
process outlined above, with the following exceptions: i) planar walls were employed for building 

 
Figure 8. Ratio of median shear demand to 
expected shear capacity versus earthquake 

intensity relative to the MCE 
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heights of 12 stories or less and c-shaped walls were employed for building heights greater than 12 
stories ii) for each building height, walls were sized to achieve fundamental periods ranging from 
0.08N to 0.20N, where N is the number of building stories and the period range is approximately equal 
to the ASCE 7 empirical upper limit on the design period, CuTa, and iii) for each building height and 
period, strength reduction factors of 2, 3 and 4 were used to design longitudinal reinforcement; these 
strength reduction factors were applied directly to demands determined from MRSA and were not 
scaled to meet demands determined from the ELF procedure. Nonlinear ITHA were conducted for all 
of the walled building designs using a suite of seven synthetic ground motions. The synthetic motions 
were constructed to provide a best fit to the ASCE 7 design spectrum and employed to reduce 
variability in simulated response resulting from earthquake ground motion variability. Motions were 
applied only in one direction; parallel to planar walls and the web of the c-shaped walls.  

For this second set of walled building designs, nonlinear analysis results were consistent with 
previous results. Maximum shear demand determined from nonlinear analysis significantly exceeded 
design shear demand determined from MRSA. Previous research (Blakeley et al. 1975) demonstrates 
that for walls exhibiting nonlinear response, amplification of shear demand, over that predicted from 
elastic analysis, results from flexural over-strength and from dynamic amplification. The actual 
flexural capacity of a wall exceeds the design demand due to code-based strength requirements and 
actual material strengths that exceed design strengths. Since flexural yielding is the expected response 
mechanism for concrete walls, actual shear demand is necessarily a function of flexural capacity. 
Thus, flexural over strength results in actual shear demands that exceed design demands. While 
flexural yielding at the base of the wall limits shear demand due to first-mode seismic demands (first-
mode seismic demands produce a maximum moment at the base of the wall), flexural yielding at the 
base of the wall does not limit higher-mode seismic demands. Ultimately, this results in a drop in the 
effective height at which the resultant seismic shear acts and an increase, over that predicted using 
elastic analysis, in the base shear associated with the wall achieving flexural strength at the base. This 
increase in shear demand associated with dynamic response of the yielding wall is typically identified 
as dynamic amplification.  

A capacity-design procedure for shear requires accurate prediction of shear demand for the 
range of wall heights and configurations found in practice. Flexural over-strength is relatively constant 
with building height and period, and the impact of flexural over-strength on shear demand is easily 
estimated. Pugh (2012) recommends that an over-strength factor of 1.4 to 1.5 be used; this is 
consistent with NIST (2011) and Priestley et al. (2007). However, prediction of dynamic amplification 
is more challenging. Figure 9 shows the ratio of the dynamic amplification factor computed using 
previously proposed methods, v, to the dynamic amplification factor computed from nonlinear 
analysis results, with ITHA = VITHA/Vuo, where VITHA is the maximum shear demand computed for 
the ITHA of the walled building, Vu is the design shear demand and o is the computed flexural over-
strength, with o = Mpr/Mn, where Mpr is the flexural capacity of the wall computed using probably 
material properties and Mu is moment demand used for design. The data in Figure 9 show i) the 
method proposed by Eibl provides the best prediction of dynamic amplification, ii) the Eibl method is 
precise but slightly unconservative for shorter buildings and relatively imprecise for taller buildings, 
iii) the NZ 3101 and SEAOC methods are unconservative for buildings of all heights designed using 
strength reduction factors greater than 3, and iv) The Priestley et al. method is relatively accurate and 
precise for shorter buildings but overly conservative for taller buildings. On the basis of the data in 
Figure 9 it was concluded that additional research to develop an improved method for determining a 
dynamic amplification factor for shear was warranted. 

To improve prediction of shear demand and thereby enable capacity design for shear, the Eibl 
method was modified. Using the Eibl method, shear demand is computed as the sum of the reduced 
first-mode shear and unreduced higher mode shear demands. This approach follows from the 
assumptions that i) first-mode response dominates system response, ii) inelastic action is limited to the 
first-mode with higher-modes responding essentially elastically, and iii) shear demand may be 
computed as the sum of the reduced first-mode shear and the unreduced higher-mode contributions to 
base shear. However, evaluation of the ITHA data shows that as building height increases, higher 
mode contributions to base shear begin to dominate over first mode contributions. This is assumed to 
produce the observed inaccuracy in predicted dynamic amplification for taller buildings that is shown 
in Figure 9c. Thus a modified MRSA method was developed in which the mode that represents the 



  
 

  

largest contribution to the base shear is identified (typically the first or second mode) and the design 
shear is defined equal to sum of the reduced shear forces associated with this mode and the unreduced 
forces associated with all other modes.  

    
 Building Height (Stories) Building Height (Stories) 
 (a) v computed per NZ 3101 (2006) (b) v computed per SEAOC (2008) 

   
 Building Height (Stories) Building Height (Stories) 

 (c) v computed per Eibl and Keintzel (1990) (d) v computed per Preistly et al. (2007) 

    Figure 9. Ratio of predicted to simulated dynamic amplification for walled buildings of varying heights. 
 
Figure 10 shows the ratio of dynamic amplification 

computed using the proposed approach, v, to dynamic 
computed as described previously from nonlinear analysis 
results,ITHA. The data in Figure 10 show that using the 
proposed approach, dynamic amplification of shear can be 
computed precisely, though slightly unconservatively, for 
the full range of building heights typically considered in 
design. The slight unconservativism is attributed to the 
fact that design shear demand is determined assuming 2% 
damping in all modes while shear demand from nonlinear 
analysis employs Rayleigh damping of 2% for periods of 
1.5T1 and T2, with substantially smaller damping ratios 
achieved for periods between 1.5T1 and T2. To achieve 
accurate and precise prediction of shear demand, shear 
demand computed as above can be increased by 10%. 

Thus, a capacity-design procedure for shear in slender concrete walls is proposed in which 

߶ ௡ܸ ൒ Ω௢ߚ ௨ܸ (3) 

where ߶ is the code-based strength reduction factor for shear, ௡ܸ  is the code-based shear strength, Ω௢ 
= 1.4 to account for increased shear demand due to flexural over-strength, ߚ ൌ 1.1 to account for 
assumption of increased damping in elastic analysis, and ௨ܸ is the shear demand computed using the 
results of linear elastic MRSA with a code-based strength reduction factor applied only to the one 
mode that represents the largest contribution to the base shear and demands from all other modes 
remaining unreduced.    

 
       Building Height (Stories) 

Figure 10.  Ratio of predicted to simulated 
dynamic amplification factor.  
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SEISMIC DESIGN OF SLENDER WALLS: FLEXURAL DEMAND 

With the above capacity-design procedure for shear limiting the risk of shear failure, the research 
effort focused on the expected earthquake performance of walls designed per US codes and standard 
practice and exhibiting flexure-controlled response. To improve understanding of the earthquake 
performance of walls responding in flexure, a series of nine walled buildings ranging in height from 6 
to 24 stories was designed using the capacity-design procedure for shear presented above, the design 
process described above and US standard practice with the exception that four different approaches for 
defining the shape of the moment demand envelope employed for design of longitudinal reinforcement 
up the height of the wall were considered. These approaches included i) employing the demand 
enveloped determined from the MRSA analysis such that longitudinal reinforcement was reduced at 
intervals up the height of the wall until the ACI Code minimum reinforcement ratio was reached, ii) 
following the recommendations of  Paulay and Priestley (1992) and SEAOC (2006) in which the 
moment demand at the base is assumed to extend up to a height equal to the horizontal length of the 
wall and then diminish linearly to zero at the top of the wall, and iii) employing a variation of the dual-
hinge design method recommended by Panagiotou and Restrepo (2009) in which the cross-section at 
the base of the wall was maintained over the entire height of the wall except for a region just above 
mid-height where the flexural strength of the wall was significantly weakened. In all cases, walls were 
designed such that the factored flexural strength of the wall exceeded the reduced flexural demands, 
where the flexural demand defining the demand envelope was determined using the results of MRSA 
with a strength reduction factor of 3 was applied directly to the MRSA demand.  

The earthquake performance of the idealized buildings was assessed on the basis of results of 
nonlinear dynamic analyses performed using the numerical modeling approach and the suite of seven 
synthetic ground motion records scaled to the DBE and MCE. Figure 11 shows median curvature 
demand, defined as the maximum curvature demand divided by the yield curvature, for the 6-story 
building, the three demand envelopes and the MCE. These data show that when demands are 
determined i) directly from MRSA results, inelastic flexural response response occurs over the entire 
height of the walls with large ductility demands at the base of the wall, ii) using the Paulay and 
Priestley envelope, inelastic action is limited to the base of the wall, iii) using the Panagiotou and 
Restrepo dual hinge method inelastic action is limited to the base of the wall and the designer-
specified second-hinge location, though it should be noted that inclusion of the second hinge does not 
diminish ductility demands at the base of the wall. Similar results were observed for the 6- and 20-
story designs. For the Paulay and Priestley and Rangioutou and Restrepo demand envelopes, inelastic 
action is limited to those regions where it is expected to occur. This is not the case for the MRSA-
based demand envelope. Copious volumes of transverse reinforcement are required to ensure ductile 
response in regions where significant inelastic action is expected. Thus, if the MRSA-based demand 
envelope is used, copious volumes of transverse reinforcement are required over a large portion of the 
wall. Given this, the results of this study suggest that the Paulay and Priestley and Pagioutou and 
Restrepo envelopes are preferred to the MRSA-based approach.    

 
 (a) MRSA (b) Paulay and Priestley (1992) (c) Panagioutou and Restrepo (2009) 

Figure 11.  Median curvature demand for different flexural demand envelopes for 6-story walled building 
subjected to suite of seven synthetic motions scaled to the MCE     



  
 

  

SEISMIC DESIGN OF SLENDER WALLS: STRENGTH REDUCTION FACTORS 

The above recommendations for determining design demands will improve the earthquake 
performance of concrete walled buildings over that expected for buildings designed using current US 
design codes and standard practice. Further research was required to determine strength reduction 
factors for use in design to ensure that walled buildings exhibit the desired earthquake collapse risk. A 
series of nine buildings ranging in height from 6 to 20 stories was designed using i) either the shear-
capacity procedure described above or shear demand determined directly from elastic analysis as is 
current standard practice in the US, ii) flexural demand envelope by Priestley and Paulay (1992) or 
Panagioutou and Restrepo (2009), and iii) demands determined by applying a strength reduction factor 
of R = 3 directly to MRSA demands or using the ASCE 7 procedure in which a strength reduction 
factor of R = 6 is applied to MRSA demands and then demands are scaled to 100% of the EFL demand 
(this is approximately equivalent to R = 4 applied directly to MRSA demands). These buildings were 
then evaluated using the FEMA P695 methodology and results were used to estimate the R-factors 
required to achieve a collapse risk of 20% under the MCE.  

The FEMA P695 methodology was developed to provide a rational basis for establishing and 
evaluating the seismic performance factors (i.e. R, Cd and o) used in ASCE 7. The methodology 
entails i) designing a series of buildings that comply with a set of design criteria and span the practical 
design space, and ii) performing nonlinear ITHA of the buildings, using a provided suite of earthquake 
ground motions, to assess collapse capacity. Collapse capacity is quantified in terms of a collapse 
margin ratio (CMR) that is the ratio between the ground motion intensity that causes collapse for more 
than half of the ground motions and the MCE intensity. Collapse risk is determined by computing an 
adjusted CMR (ACMR); the CMR is adjusted to account for spectral shape variations expected for 
extreme seismic events and for uncertainties in design, simulation and building idealization. While the 
preferred application of the P695 methodology is to demonstrate that a given set of seismic 
performance factors produces the desired collapse risk; however, the R-factor required to achieve a 
specific collapse risk may be estimated by assuming a linear relationship between R and ACMR in the 
vicinity of the desired R-factor. 

Nonlinear ITHA of the 12 building designs were conducted and the P695 methodology was 
employed to estimate R-factors required to achieve a 20% collapse risk for the MCE. For 6- and 12-
story buildings that employed planar walls, R-factors ranging from 2.5 to 2.7 were required to achieve 
the specified collapse risk. For the 20-story buildings that employed c-shaped walls, an R-factor of 3.9 
or 3.6 was required to achieve the specified collapse risk. This increased R-factor is attributed to the 
wall flanges providing a wider compression zone that results in reduced compressive strain demands 
and, thus, delayed onset of compression-controlled flexural failure. On the basis of these results, R-
factors of 2.5 and 3.5 are recommended for design of planar and c-shaped core walls, respectively.     

CONCLUSIONS 

Review of earthquake damage to concrete walled buildings and damage sustained by slender concrete 
walls in the laboratory suggests walls commonly exhibit compression-controlled flexural failure. 
Evaluation of existing response models for slender concrete walls shows that these models are not 
accurate, and that in particular these models do not provide accurate simulation of strength loss. A new 
response model for slender walls was developed using the force-based distributed-plasticity fiber-type 
beam-column element available in OpenSees. To provide accurate, mesh-objective prediction of 
strength loss, the model employs regularization of concrete and steel material response histories using 
concrete crushing energy, steel yield energy and mesh-dependent lengths. Crushing energies for 
confined and unconfined concrete were calibrated using data from laboratory tests of walls exhibiting 
compression-controlled failure. The model was applied to investigate the seismic performance of 
walled buildings and advance seismic design procedures. The results of nonlinear ITHA show that i) 
walls designed using current standard practice in the US could be expected to exhibit shear failure 
under moderate earthquake loading, ii) a newly developed capacity-design procedure for shear can 
significantly reduce the likelihood of shear failure, iii) use of the flexural demand envelopes proposed 
by Paulay and Priestly (1992) and Panagioutou and Restrepo (2009) can ensure that flexural yielding 
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is isolated to expected regions of the wall, and iv) strength reduction factors of 2.5 and 3.5, applied 
directly to demands determined from MRSA, are required to achieved desired collapse risk for planar 
and c-shaped walls, respectively.          
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